Loading…

The Euler spiral of rat whiskers

This paper reports on an analytical study of the intrinsic shapes of 523 whiskers from 15 rats. We show that the variety of whiskers on a rat's cheek, each of which has different lengths and shapes, can be described by a simple mathematical equation such that each whisker is represented as an i...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2020-01, Vol.6 (3), p.eaax5145-eaax5145
Main Authors: Starostin, Eugene L, Grant, Robyn A, Dougill, Gary, van der Heijden, Gert H M, Goss, Victor G A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-5c1ed51d3ff3aaa03b8824c38ba0676c1571cc6184c3817a986b955592124aa23
cites cdi_FETCH-LOGICAL-c390t-5c1ed51d3ff3aaa03b8824c38ba0676c1571cc6184c3817a986b955592124aa23
container_end_page eaax5145
container_issue 3
container_start_page eaax5145
container_title Science advances
container_volume 6
creator Starostin, Eugene L
Grant, Robyn A
Dougill, Gary
van der Heijden, Gert H M
Goss, Victor G A
description This paper reports on an analytical study of the intrinsic shapes of 523 whiskers from 15 rats. We show that the variety of whiskers on a rat's cheek, each of which has different lengths and shapes, can be described by a simple mathematical equation such that each whisker is represented as an interval on the Euler spiral. When all the representative curves of mystacial vibrissae for a single rat are assembled together, they span an interval extending from one coiled domain of the Euler spiral to the other. We additionally find that each whisker makes nearly the same angle of 47 with the normal to the spherical virtual surface formed by the tips of whiskers, which constitutes the rat's tactile sensory shroud or "search space." The implications of the linear curvature model for gaining insight into relationships between growth, form, and function are discussed.
doi_str_mv 10.1126/sciadv.aax5145
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6962041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348806570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-5c1ed51d3ff3aaa03b8824c38ba0676c1571cc6184c3817a986b955592124aa23</originalsourceid><addsrcrecordid>eNpVkM1PwzAMxSMEYmjsyhH1yKUjTpo0uSChaXxIk7iMc-SmKQt060jaAf89nTamcbJlPz8__Qi5AjoGYPI2Wo_lZoz4LSATJ-SC8VykTGTq9KgfkFGM75RSyKQUoM_JgIPWSnFxQZL5wiXTrnYhiWsfsE6aKgnYJl8LHz9ciJfkrMI6utG-Dsnrw3Q-eUpnL4_Pk_tZarmmbSosuFJAyauKIyLlhVIss1wVSGUuLYgcrJWgtjPIUStZaCGEZsAyRMaH5G7nu-6KpSutW7V9GrMOfonhxzTozf_Nyi_MW7MxUktGM-gNbvYGofnsXGzN0kfr6hpXrumiYTxTikqR01463kltaGIMrjq8AWq2ZM2OrNmT7Q-uj8Md5H8c-S9L2XUe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348806570</pqid></control><display><type>article</type><title>The Euler spiral of rat whiskers</title><source>PubMed Central</source><source>Science Online科学在线</source><creator>Starostin, Eugene L ; Grant, Robyn A ; Dougill, Gary ; van der Heijden, Gert H M ; Goss, Victor G A</creator><creatorcontrib>Starostin, Eugene L ; Grant, Robyn A ; Dougill, Gary ; van der Heijden, Gert H M ; Goss, Victor G A</creatorcontrib><description>This paper reports on an analytical study of the intrinsic shapes of 523 whiskers from 15 rats. We show that the variety of whiskers on a rat's cheek, each of which has different lengths and shapes, can be described by a simple mathematical equation such that each whisker is represented as an interval on the Euler spiral. When all the representative curves of mystacial vibrissae for a single rat are assembled together, they span an interval extending from one coiled domain of the Euler spiral to the other. We additionally find that each whisker makes nearly the same angle of 47 with the normal to the spherical virtual surface formed by the tips of whiskers, which constitutes the rat's tactile sensory shroud or "search space." The implications of the linear curvature model for gaining insight into relationships between growth, form, and function are discussed.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aax5145</identifier><identifier>PMID: 31998835</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Mathematics ; SciAdv r-articles</subject><ispartof>Science advances, 2020-01, Vol.6 (3), p.eaax5145-eaax5145</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-5c1ed51d3ff3aaa03b8824c38ba0676c1571cc6184c3817a986b955592124aa23</citedby><cites>FETCH-LOGICAL-c390t-5c1ed51d3ff3aaa03b8824c38ba0676c1571cc6184c3817a986b955592124aa23</cites><orcidid>0000-0002-0720-5469 ; 0000-0002-5849-2509 ; 0000-0001-9844-6737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962041/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962041/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31998835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Starostin, Eugene L</creatorcontrib><creatorcontrib>Grant, Robyn A</creatorcontrib><creatorcontrib>Dougill, Gary</creatorcontrib><creatorcontrib>van der Heijden, Gert H M</creatorcontrib><creatorcontrib>Goss, Victor G A</creatorcontrib><title>The Euler spiral of rat whiskers</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>This paper reports on an analytical study of the intrinsic shapes of 523 whiskers from 15 rats. We show that the variety of whiskers on a rat's cheek, each of which has different lengths and shapes, can be described by a simple mathematical equation such that each whisker is represented as an interval on the Euler spiral. When all the representative curves of mystacial vibrissae for a single rat are assembled together, they span an interval extending from one coiled domain of the Euler spiral to the other. We additionally find that each whisker makes nearly the same angle of 47 with the normal to the spherical virtual surface formed by the tips of whiskers, which constitutes the rat's tactile sensory shroud or "search space." The implications of the linear curvature model for gaining insight into relationships between growth, form, and function are discussed.</description><subject>Mathematics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkM1PwzAMxSMEYmjsyhH1yKUjTpo0uSChaXxIk7iMc-SmKQt060jaAf89nTamcbJlPz8__Qi5AjoGYPI2Wo_lZoz4LSATJ-SC8VykTGTq9KgfkFGM75RSyKQUoM_JgIPWSnFxQZL5wiXTrnYhiWsfsE6aKgnYJl8LHz9ciJfkrMI6utG-Dsnrw3Q-eUpnL4_Pk_tZarmmbSosuFJAyauKIyLlhVIss1wVSGUuLYgcrJWgtjPIUStZaCGEZsAyRMaH5G7nu-6KpSutW7V9GrMOfonhxzTozf_Nyi_MW7MxUktGM-gNbvYGofnsXGzN0kfr6hpXrumiYTxTikqR01463kltaGIMrjq8AWq2ZM2OrNmT7Q-uj8Md5H8c-S9L2XUe</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Starostin, Eugene L</creator><creator>Grant, Robyn A</creator><creator>Dougill, Gary</creator><creator>van der Heijden, Gert H M</creator><creator>Goss, Victor G A</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0720-5469</orcidid><orcidid>https://orcid.org/0000-0002-5849-2509</orcidid><orcidid>https://orcid.org/0000-0001-9844-6737</orcidid></search><sort><creationdate>20200101</creationdate><title>The Euler spiral of rat whiskers</title><author>Starostin, Eugene L ; Grant, Robyn A ; Dougill, Gary ; van der Heijden, Gert H M ; Goss, Victor G A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-5c1ed51d3ff3aaa03b8824c38ba0676c1571cc6184c3817a986b955592124aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Mathematics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starostin, Eugene L</creatorcontrib><creatorcontrib>Grant, Robyn A</creatorcontrib><creatorcontrib>Dougill, Gary</creatorcontrib><creatorcontrib>van der Heijden, Gert H M</creatorcontrib><creatorcontrib>Goss, Victor G A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starostin, Eugene L</au><au>Grant, Robyn A</au><au>Dougill, Gary</au><au>van der Heijden, Gert H M</au><au>Goss, Victor G A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Euler spiral of rat whiskers</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>6</volume><issue>3</issue><spage>eaax5145</spage><epage>eaax5145</epage><pages>eaax5145-eaax5145</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>This paper reports on an analytical study of the intrinsic shapes of 523 whiskers from 15 rats. We show that the variety of whiskers on a rat's cheek, each of which has different lengths and shapes, can be described by a simple mathematical equation such that each whisker is represented as an interval on the Euler spiral. When all the representative curves of mystacial vibrissae for a single rat are assembled together, they span an interval extending from one coiled domain of the Euler spiral to the other. We additionally find that each whisker makes nearly the same angle of 47 with the normal to the spherical virtual surface formed by the tips of whiskers, which constitutes the rat's tactile sensory shroud or "search space." The implications of the linear curvature model for gaining insight into relationships between growth, form, and function are discussed.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>31998835</pmid><doi>10.1126/sciadv.aax5145</doi><orcidid>https://orcid.org/0000-0002-0720-5469</orcidid><orcidid>https://orcid.org/0000-0002-5849-2509</orcidid><orcidid>https://orcid.org/0000-0001-9844-6737</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2020-01, Vol.6 (3), p.eaax5145-eaax5145
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6962041
source PubMed Central; Science Online科学在线
subjects Mathematics
SciAdv r-articles
title The Euler spiral of rat whiskers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Euler%20spiral%20of%20rat%20whiskers&rft.jtitle=Science%20advances&rft.au=Starostin,%20Eugene%20L&rft.date=2020-01-01&rft.volume=6&rft.issue=3&rft.spage=eaax5145&rft.epage=eaax5145&rft.pages=eaax5145-eaax5145&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aax5145&rft_dat=%3Cproquest_pubme%3E2348806570%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-5c1ed51d3ff3aaa03b8824c38ba0676c1571cc6184c3817a986b955592124aa23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2348806570&rft_id=info:pmid/31998835&rfr_iscdi=true