Loading…
The Euler spiral of rat whiskers
This paper reports on an analytical study of the intrinsic shapes of 523 whiskers from 15 rats. We show that the variety of whiskers on a rat's cheek, each of which has different lengths and shapes, can be described by a simple mathematical equation such that each whisker is represented as an i...
Saved in:
Published in: | Science advances 2020-01, Vol.6 (3), p.eaax5145-eaax5145 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-5c1ed51d3ff3aaa03b8824c38ba0676c1571cc6184c3817a986b955592124aa23 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-5c1ed51d3ff3aaa03b8824c38ba0676c1571cc6184c3817a986b955592124aa23 |
container_end_page | eaax5145 |
container_issue | 3 |
container_start_page | eaax5145 |
container_title | Science advances |
container_volume | 6 |
creator | Starostin, Eugene L Grant, Robyn A Dougill, Gary van der Heijden, Gert H M Goss, Victor G A |
description | This paper reports on an analytical study of the intrinsic shapes of 523 whiskers from 15 rats. We show that the variety of whiskers on a rat's cheek, each of which has different lengths and shapes, can be described by a simple mathematical equation such that each whisker is represented as an interval on the Euler spiral. When all the representative curves of mystacial vibrissae for a single rat are assembled together, they span an interval extending from one coiled domain of the Euler spiral to the other. We additionally find that each whisker makes nearly the same angle of 47
with the normal to the spherical virtual surface formed by the tips of whiskers, which constitutes the rat's tactile sensory shroud or "search space." The implications of the linear curvature model for gaining insight into relationships between growth, form, and function are discussed. |
doi_str_mv | 10.1126/sciadv.aax5145 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6962041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348806570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-5c1ed51d3ff3aaa03b8824c38ba0676c1571cc6184c3817a986b955592124aa23</originalsourceid><addsrcrecordid>eNpVkM1PwzAMxSMEYmjsyhH1yKUjTpo0uSChaXxIk7iMc-SmKQt060jaAf89nTamcbJlPz8__Qi5AjoGYPI2Wo_lZoz4LSATJ-SC8VykTGTq9KgfkFGM75RSyKQUoM_JgIPWSnFxQZL5wiXTrnYhiWsfsE6aKgnYJl8LHz9ciJfkrMI6utG-Dsnrw3Q-eUpnL4_Pk_tZarmmbSosuFJAyauKIyLlhVIss1wVSGUuLYgcrJWgtjPIUStZaCGEZsAyRMaH5G7nu-6KpSutW7V9GrMOfonhxzTozf_Nyi_MW7MxUktGM-gNbvYGofnsXGzN0kfr6hpXrumiYTxTikqR01463kltaGIMrjq8AWq2ZM2OrNmT7Q-uj8Md5H8c-S9L2XUe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348806570</pqid></control><display><type>article</type><title>The Euler spiral of rat whiskers</title><source>PubMed Central</source><source>Science Online科学在线</source><creator>Starostin, Eugene L ; Grant, Robyn A ; Dougill, Gary ; van der Heijden, Gert H M ; Goss, Victor G A</creator><creatorcontrib>Starostin, Eugene L ; Grant, Robyn A ; Dougill, Gary ; van der Heijden, Gert H M ; Goss, Victor G A</creatorcontrib><description>This paper reports on an analytical study of the intrinsic shapes of 523 whiskers from 15 rats. We show that the variety of whiskers on a rat's cheek, each of which has different lengths and shapes, can be described by a simple mathematical equation such that each whisker is represented as an interval on the Euler spiral. When all the representative curves of mystacial vibrissae for a single rat are assembled together, they span an interval extending from one coiled domain of the Euler spiral to the other. We additionally find that each whisker makes nearly the same angle of 47
with the normal to the spherical virtual surface formed by the tips of whiskers, which constitutes the rat's tactile sensory shroud or "search space." The implications of the linear curvature model for gaining insight into relationships between growth, form, and function are discussed.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aax5145</identifier><identifier>PMID: 31998835</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Mathematics ; SciAdv r-articles</subject><ispartof>Science advances, 2020-01, Vol.6 (3), p.eaax5145-eaax5145</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-5c1ed51d3ff3aaa03b8824c38ba0676c1571cc6184c3817a986b955592124aa23</citedby><cites>FETCH-LOGICAL-c390t-5c1ed51d3ff3aaa03b8824c38ba0676c1571cc6184c3817a986b955592124aa23</cites><orcidid>0000-0002-0720-5469 ; 0000-0002-5849-2509 ; 0000-0001-9844-6737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962041/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962041/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31998835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Starostin, Eugene L</creatorcontrib><creatorcontrib>Grant, Robyn A</creatorcontrib><creatorcontrib>Dougill, Gary</creatorcontrib><creatorcontrib>van der Heijden, Gert H M</creatorcontrib><creatorcontrib>Goss, Victor G A</creatorcontrib><title>The Euler spiral of rat whiskers</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>This paper reports on an analytical study of the intrinsic shapes of 523 whiskers from 15 rats. We show that the variety of whiskers on a rat's cheek, each of which has different lengths and shapes, can be described by a simple mathematical equation such that each whisker is represented as an interval on the Euler spiral. When all the representative curves of mystacial vibrissae for a single rat are assembled together, they span an interval extending from one coiled domain of the Euler spiral to the other. We additionally find that each whisker makes nearly the same angle of 47
with the normal to the spherical virtual surface formed by the tips of whiskers, which constitutes the rat's tactile sensory shroud or "search space." The implications of the linear curvature model for gaining insight into relationships between growth, form, and function are discussed.</description><subject>Mathematics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkM1PwzAMxSMEYmjsyhH1yKUjTpo0uSChaXxIk7iMc-SmKQt060jaAf89nTamcbJlPz8__Qi5AjoGYPI2Wo_lZoz4LSATJ-SC8VykTGTq9KgfkFGM75RSyKQUoM_JgIPWSnFxQZL5wiXTrnYhiWsfsE6aKgnYJl8LHz9ciJfkrMI6utG-Dsnrw3Q-eUpnL4_Pk_tZarmmbSosuFJAyauKIyLlhVIss1wVSGUuLYgcrJWgtjPIUStZaCGEZsAyRMaH5G7nu-6KpSutW7V9GrMOfonhxzTozf_Nyi_MW7MxUktGM-gNbvYGofnsXGzN0kfr6hpXrumiYTxTikqR01463kltaGIMrjq8AWq2ZM2OrNmT7Q-uj8Md5H8c-S9L2XUe</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Starostin, Eugene L</creator><creator>Grant, Robyn A</creator><creator>Dougill, Gary</creator><creator>van der Heijden, Gert H M</creator><creator>Goss, Victor G A</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0720-5469</orcidid><orcidid>https://orcid.org/0000-0002-5849-2509</orcidid><orcidid>https://orcid.org/0000-0001-9844-6737</orcidid></search><sort><creationdate>20200101</creationdate><title>The Euler spiral of rat whiskers</title><author>Starostin, Eugene L ; Grant, Robyn A ; Dougill, Gary ; van der Heijden, Gert H M ; Goss, Victor G A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-5c1ed51d3ff3aaa03b8824c38ba0676c1571cc6184c3817a986b955592124aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Mathematics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starostin, Eugene L</creatorcontrib><creatorcontrib>Grant, Robyn A</creatorcontrib><creatorcontrib>Dougill, Gary</creatorcontrib><creatorcontrib>van der Heijden, Gert H M</creatorcontrib><creatorcontrib>Goss, Victor G A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starostin, Eugene L</au><au>Grant, Robyn A</au><au>Dougill, Gary</au><au>van der Heijden, Gert H M</au><au>Goss, Victor G A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Euler spiral of rat whiskers</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>6</volume><issue>3</issue><spage>eaax5145</spage><epage>eaax5145</epage><pages>eaax5145-eaax5145</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>This paper reports on an analytical study of the intrinsic shapes of 523 whiskers from 15 rats. We show that the variety of whiskers on a rat's cheek, each of which has different lengths and shapes, can be described by a simple mathematical equation such that each whisker is represented as an interval on the Euler spiral. When all the representative curves of mystacial vibrissae for a single rat are assembled together, they span an interval extending from one coiled domain of the Euler spiral to the other. We additionally find that each whisker makes nearly the same angle of 47
with the normal to the spherical virtual surface formed by the tips of whiskers, which constitutes the rat's tactile sensory shroud or "search space." The implications of the linear curvature model for gaining insight into relationships between growth, form, and function are discussed.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>31998835</pmid><doi>10.1126/sciadv.aax5145</doi><orcidid>https://orcid.org/0000-0002-0720-5469</orcidid><orcidid>https://orcid.org/0000-0002-5849-2509</orcidid><orcidid>https://orcid.org/0000-0001-9844-6737</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2020-01, Vol.6 (3), p.eaax5145-eaax5145 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6962041 |
source | PubMed Central; Science Online科学在线 |
subjects | Mathematics SciAdv r-articles |
title | The Euler spiral of rat whiskers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Euler%20spiral%20of%20rat%20whiskers&rft.jtitle=Science%20advances&rft.au=Starostin,%20Eugene%20L&rft.date=2020-01-01&rft.volume=6&rft.issue=3&rft.spage=eaax5145&rft.epage=eaax5145&rft.pages=eaax5145-eaax5145&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aax5145&rft_dat=%3Cproquest_pubme%3E2348806570%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-5c1ed51d3ff3aaa03b8824c38ba0676c1571cc6184c3817a986b955592124aa23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2348806570&rft_id=info:pmid/31998835&rfr_iscdi=true |