Loading…

“Dose of the day” based on cone beam computed tomography and deformable image registration for lung cancer radiotherapy

Purpose Adaptive radiotherapy (ART) has potential to reduce toxicity and facilitate safe dose escalation. Dose calculations with the planning CT deformed to cone beam CT (CBCT) have shown promise for estimating the “dose of the day”. The purpose of this study is to investigate the “dose of the day”...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied clinical medical physics 2020-01, Vol.21 (1), p.88-94
Main Authors: Yuan, Zilong, Rong, Yi, Benedict, Stanley H., Daly, Megan E., Qiu, Jianfeng, Yamamoto, Tokihiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose Adaptive radiotherapy (ART) has potential to reduce toxicity and facilitate safe dose escalation. Dose calculations with the planning CT deformed to cone beam CT (CBCT) have shown promise for estimating the “dose of the day”. The purpose of this study is to investigate the “dose of the day” calculation accuracy based on CBCT and deformable image registration (DIR) for lung cancer radiotherapy. Methods A total of 12 lung cancer patients were identified, for which daily CBCT imaging was performed for treatment positioning. A re‐planning CT (rCT) was acquired after 20 Gy for all patients. A virtual CT (vCT) was created by deforming initial planning CT (pCT) to the simulated CBCT that was generated from deforming CBCT to rCT acquired on the same day. Treatment beams from the initial plan were copied to the vCT and rCT for dose calculation. Dosimetric agreement between vCT‐based and rCT‐based accumulated doses was evaluated using the Bland‐Altman analysis. Results Mean differences in dose‐volume metrics between vCT and rCT were smaller than 1.5%, and most discrepancies fell within the range of ± 5% for the target volume, lung, esophagus, and heart. For spinal cord Dmax, a large mean difference of −5.55% was observed, which was largely attributed to very limited CBCT image quality (e.g., truncation artifacts). Conclusion This study demonstrated a reasonable agreement in dose‐volume metrics between dose accumulation based on vCT and rCT, with the exception for cases with poor CBCT image quality. These findings suggest potential utility of vCT for providing a reasonable estimate of the “dose of the day”, and thus facilitating the process of ART for lung cancer.
ISSN:1526-9914
1526-9914
DOI:10.1002/acm2.12793