Loading…
Genetically Engineered Cell-Derived Nanoparticles for Targeted Breast Cancer Immunotherapy
Exosomes are nanosized membranous vesicles secreted by a variety of cells. Due to their unique and pharmacologically important properties, cell-derived exosome nanoparticles have drawn significant interest for drug development. By genetically modifying exosomes with two distinct types of surface-dis...
Saved in:
Published in: | Molecular therapy 2020-02, Vol.28 (2), p.536-547 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Exosomes are nanosized membranous vesicles secreted by a variety of cells. Due to their unique and pharmacologically important properties, cell-derived exosome nanoparticles have drawn significant interest for drug development. By genetically modifying exosomes with two distinct types of surface-displayed monoclonal antibodies, we have developed an exosome platform termed synthetic multivalent antibodies retargeted exosome (SMART-Exo) for controlling cellular immunity. Here, we apply this approach to human epidermal growth factor receptor 2 (HER2)-expressing breast cancer by engineering exosomes through genetic display of both anti-human CD3 and anti-human HER2 antibodies, resulting in SMART-Exos dually targeting T cell CD3 and breast cancer-associated HER2 receptors. By redirecting and activating cytotoxic T cells toward attacking HER2-expressing breast cancer cells, the designed SMART-Exos exhibited highly potent and specific anti-tumor activity both in vitro and in vivo. This work demonstrates preclinical feasibility of utilizing endogenous exosomes for targeted breast cancer immunotherapy and the SMART-Exos as a broadly applicable platform technology for the development of next-generation immuno-nanomedicines.
[Display omitted]
Zhang and colleagues report that reprogramming cell-derived exosomes with distinct types of monoclonal antibodies resulted in synthetic multivalent antibodies retargeted exosomes (SMART-Exos) displaying excellent potency and specificity in redirecting and activating T cells toward HER2-positive breast cancer cells for destruction, which may lead to an innovative class of exosome-based immunotherapeutics. |
---|---|
ISSN: | 1525-0016 1525-0024 |
DOI: | 10.1016/j.ymthe.2019.11.020 |