Loading…
Fully automated plaque characterization in intravascular OCT images using hybrid convolutional and lumen morphology features
For intravascular OCT (IVOCT) images, we developed an automated atherosclerotic plaque characterization method that used a hybrid learning approach, which combined deep-learning convolutional and hand-crafted, lumen morphological features. Processing was done on innate A-line units with labels fibro...
Saved in:
Published in: | Scientific reports 2020-02, Vol.10 (1), p.2596-2596, Article 2596 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For intravascular OCT (IVOCT) images, we developed an automated atherosclerotic plaque characterization method that used a hybrid learning approach, which combined deep-learning convolutional and hand-crafted, lumen morphological features. Processing was done on innate A-line units with labels fibrolipidic (fibrous tissue followed by lipidous tissue), fibrocalcific (fibrous tissue followed by calcification), or other. We trained/tested on an expansive data set (6,556 images), and performed an active learning, relabeling step to improve noisy ground truth labels. Conditional random field was an important post-processing step to reduce classification errors. Sensitivities/specificities were 84.8%/97.8% and 91.4%/95.7% for fibrolipidic and fibrocalcific plaques, respectively. Over lesions, en face classification maps showed automated results that agreed favorably to manually labeled counterparts. Adding lumen morphological features gave statistically significant improvement (p  |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-59315-6 |