Loading…
Natural Language Processing to Extract Meaningful Information from Patient Experience Feedback
Abstract Background Due to reimbursement tied in part to patients' perception of their care, hospitals continue to stress obtaining patient feedback and understanding it to plan interventions to improve patients' experience. We demonstrate the use of natural language processing (NLP) to e...
Saved in:
Published in: | Applied clinical informatics 2020-03, Vol.11 (2), p.242-252 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Background
Due to reimbursement tied in part to patients' perception of their care, hospitals continue to stress obtaining patient feedback and understanding it to plan interventions to improve patients' experience. We demonstrate the use of natural language processing (NLP) to extract meaningful information from patient feedback obtained through Press Ganey surveys.
Methods
The first step was to standardize textual data programmatically using NLP libraries. This included correcting spelling mistakes, converting text to lowercase, and removing words that most likely did not carry useful information. Next, we converted numeric data pertaining to each category based on sentiment and care aspect into charts. We selected care aspect categories where there were more negative comments for more in-depth study. Using NLP, we made tables of most frequently appearing words, adjectives, and bigrams. Comments with frequent words/combinations underwent further study manually to understand factors contributing to negative patient feedback. We then used the positive and negative comments as the training dataset for a neural network to perform sentiment analysis on sentences obtained by splitting mixed reviews.
Results
We found that most of the comments were about doctors and nurses, confirming the important role patients ascribed to these two in patient care. “Room,” “discharge” and “tests and treatments” were the three categories that had more negative than positive comments. We then tabulated commonly appearing words, adjectives, and two-word combinations. We found that climate control, housekeeping and noise levels in the room, time delays in discharge paperwork, conflicting information about discharge plan, frequent blood draws, and needle sticks were major contributors to negative patient feedback. None of this information was available from numeric data alone.
Conclusion
NLP is an effective tool to gain insight from raw textual patient feedback to extract meaningful information, making it a powerful tool in processing large amounts of patient feedback efficiently. |
---|---|
ISSN: | 1869-0327 1869-0327 |
DOI: | 10.1055/s-0040-1708049 |