Loading…

Continuous Hypodynamic Change of Cerebrospinal Fluid Flow as A Potential Factor Working for Experimental Scoliotic Formation

Scoliosis is often associated with syringomyelia (SM). As an important role in SM formation, the influence from abnormal cerebrospinal fluid (CSF) flow is still unclear to scoliosis. The aim of this experimental work is to explore the connection between CSF flow and scoliosis through imaging and his...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-04, Vol.10 (1), p.6821-6821, Article 6821
Main Authors: Zhao, Zhi, Li, Tao, Bi, Ni, Shi, Zhiyue, Zhang, Ying, Li, Quan, Wang, Yingsong, Xie, Jingming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Scoliosis is often associated with syringomyelia (SM). As an important role in SM formation, the influence from abnormal cerebrospinal fluid (CSF) flow is still unclear to scoliosis. The aim of this experimental work is to explore the connection between CSF flow and scoliosis through imaging and histological analysis on the basis of a kaolin-induced scoliotic rabbit model. For imaging observation, in 40 kaolin-induced rabbits by C7 spinal cord injection, through pre- and postoperative MRI and radiography, CSF flow and scoliosis formation were detected at consecutive phases. According to the final formation of scoliosis until postoperative week 12, the kaolin-induced rabbits were divided into 2 groups. Through comparing the 2 groups, the relationship between the changes of CSF flow velocity and scoliosis formation were reviewed and analyzed. For histological observation, another 20 kaolin-induced rabbits were used for consecutive histological observations of spinal cord at postoperative 3-day, 2-week, 4-week and 6-week. After kaolin-induction, abnormal spinal coronal curve was observed from postoperative week 6 in the 37 survived rabbits. At postoperative week 12, scoliosis formation was detected in 73.0% kaolin-induced rabbits and the mean Cobb angle was 27.4°. From the comparison between scoliotic and non-scoliotic groups, the difference of the velocities of CSF flow was more obviously from postoperative week 4 to 12, especially after week 6. In the scoliotic group, the peak velocity of CSF flow was diseased gradually following scoliosis formation after induction. Moreover, the decrease of the peak velocities of CSF flow from preoperation to postoperative 12 weeks (ΔVmax), including up-flow (ΔVUmax) and down-flow (ΔVDmax), were positively correlated to the final scoliotic Cobb angle ( P  
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-63822-x