Loading…
Orthogonal test design for the optimization of superparamagnetic chitosan plasmid gelatin microspheres that promote vascularization of artificial bone
The optimal conditions for the preparation of superparamagnetic chitosan plasmid (pReceiver‐M29‐VEGF165/DH5a) gelatin microspheres (SPCPGMs) were determined. Then, the performance of the SPCPGMs during neovascularization was evaluated in vivo. The SPCPGMs were prepared through a cross‐linking curing...
Saved in:
Published in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2020-05, Vol.108 (4), p.1439-1449 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4891-ab97ef2d1aaf2eda4e3ed8473abc319cba35723dc843eefb3b780770eeef87c53 |
---|---|
cites | cdi_FETCH-LOGICAL-c4891-ab97ef2d1aaf2eda4e3ed8473abc319cba35723dc843eefb3b780770eeef87c53 |
container_end_page | 1449 |
container_issue | 4 |
container_start_page | 1439 |
container_title | Journal of biomedical materials research. Part B, Applied biomaterials |
container_volume | 108 |
creator | Tao, Chen Lina, Xie Changxuan, Wang Cong, Luo Xiaolan, Yang Tao, Huang Hong, An |
description | The optimal conditions for the preparation of superparamagnetic chitosan plasmid (pReceiver‐M29‐VEGF165/DH5a) gelatin microspheres (SPCPGMs) were determined. Then, the performance of the SPCPGMs during neovascularization was evaluated in vivo. The SPCPGMs were prepared through a cross‐linking curing method and then filled into the hollow scaffold of an artificial bone. Neovascularization at the bone defect position was histologically examined in samples collected 2, 4, 6, and 8 weeks after the operation. The cellular magnetofection rate of superparamagnetic chitosan nanoparticles/plasmid (pReceiver‐M29‐VEGF165/DH5a) complexes reached 1–3% under static magnetic field (SMF). Meanwhile, the optimal conditions for SPCPGM fabrication were 20% Fe3O4 (w/v), 4 mg of plasmid, 5.3 mg of glutaraldehyde, and 500 rpm of emulsification rotate speed. Under oscillating magnetic fields (OMFs), 4–6 μg of plasmids was released daily for 21 days. Under the combined application of SMF and OMF, evident neovascularization occurred at the bone defect position 6 weeks after the operation. This result is expected to provide a new type of angiogenesis strategy for the research of bone tissue engineering. |
doi_str_mv | 10.1002/jbm.b.34491 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7187448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305031159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4891-ab97ef2d1aaf2eda4e3ed8473abc319cba35723dc843eefb3b780770eeef87c53</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhiMEoqVw4o4scUFCu9hxUjsXJFpBoSrqBc7W2JkkXiV2sJ1W7YPwvHi7ZVU49OSx5tOn0f8XxWtG14zS8sNGT2u95lXVsCfFIavrclU1kj3dz4IfFC9i3GT4mNb8eXHAWR5qQQ-L35chDb73DkaSMCbSYrS9I50PJA1I_JzsZG8hWe-I70hcZgwzBJigd5isIWawyUdwZB4hTrYlPY4Zd2SyJvg4DxgwZhckMgc_-YTkCqJZRggPvBCS7ayx-QztHb4snnUwRnx1_x4VP798_nH6dXVxefbt9NPFylSyYSvQjcCubBlAV2ILFXJsZSU4aMNZYzTwWpS8NbLiiJ3mWkgqBMX8kcLU_Kj4uPPOi56wNehSgFHNwU4QbpQHq_7dODuo3l8pwaSoKpkF7-4Fwf9acoBqstHgOIJDv0RVclpTzljdZPTtf-jGLyEHv6WkLEteH9NMvd9R2_BiwG5_DKNq27fKfSut7vrO9JuH9-_ZvwVnoNwB13bEm8dc6vzk-8nO-geiYrzi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388223560</pqid></control><display><type>article</type><title>Orthogonal test design for the optimization of superparamagnetic chitosan plasmid gelatin microspheres that promote vascularization of artificial bone</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Tao, Chen ; Lina, Xie ; Changxuan, Wang ; Cong, Luo ; Xiaolan, Yang ; Tao, Huang ; Hong, An</creator><creatorcontrib>Tao, Chen ; Lina, Xie ; Changxuan, Wang ; Cong, Luo ; Xiaolan, Yang ; Tao, Huang ; Hong, An</creatorcontrib><description>The optimal conditions for the preparation of superparamagnetic chitosan plasmid (pReceiver‐M29‐VEGF165/DH5a) gelatin microspheres (SPCPGMs) were determined. Then, the performance of the SPCPGMs during neovascularization was evaluated in vivo. The SPCPGMs were prepared through a cross‐linking curing method and then filled into the hollow scaffold of an artificial bone. Neovascularization at the bone defect position was histologically examined in samples collected 2, 4, 6, and 8 weeks after the operation. The cellular magnetofection rate of superparamagnetic chitosan nanoparticles/plasmid (pReceiver‐M29‐VEGF165/DH5a) complexes reached 1–3% under static magnetic field (SMF). Meanwhile, the optimal conditions for SPCPGM fabrication were 20% Fe3O4 (w/v), 4 mg of plasmid, 5.3 mg of glutaraldehyde, and 500 rpm of emulsification rotate speed. Under oscillating magnetic fields (OMFs), 4–6 μg of plasmids was released daily for 21 days. Under the combined application of SMF and OMF, evident neovascularization occurred at the bone defect position 6 weeks after the operation. This result is expected to provide a new type of angiogenesis strategy for the research of bone tissue engineering.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34491</identifier><identifier>PMID: 31605570</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Angiogenesis ; Biomedical materials ; Chitosan ; Design optimization ; Emulsification ; Fabrication ; Gelatin ; Glutaraldehyde ; In vivo methods and tests ; Iron oxides ; magnetic field ; Magnetic fields ; magnetic gene‐loaded microspheres ; Materials research ; Materials science ; Microspheres ; Nanoparticles ; Original Research Report ; Original Research Reports ; Plasmids ; Tissue engineering ; Vascularization ; VEGF</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2020-05, Vol.108 (4), p.1439-1449</ispartof><rights>2019 The Authors. published by Wiley Periodicals, Inc.</rights><rights>2019 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4891-ab97ef2d1aaf2eda4e3ed8473abc319cba35723dc843eefb3b780770eeef87c53</citedby><cites>FETCH-LOGICAL-c4891-ab97ef2d1aaf2eda4e3ed8473abc319cba35723dc843eefb3b780770eeef87c53</cites><orcidid>0000-0002-8352-8892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31605570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tao, Chen</creatorcontrib><creatorcontrib>Lina, Xie</creatorcontrib><creatorcontrib>Changxuan, Wang</creatorcontrib><creatorcontrib>Cong, Luo</creatorcontrib><creatorcontrib>Xiaolan, Yang</creatorcontrib><creatorcontrib>Tao, Huang</creatorcontrib><creatorcontrib>Hong, An</creatorcontrib><title>Orthogonal test design for the optimization of superparamagnetic chitosan plasmid gelatin microspheres that promote vascularization of artificial bone</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>The optimal conditions for the preparation of superparamagnetic chitosan plasmid (pReceiver‐M29‐VEGF165/DH5a) gelatin microspheres (SPCPGMs) were determined. Then, the performance of the SPCPGMs during neovascularization was evaluated in vivo. The SPCPGMs were prepared through a cross‐linking curing method and then filled into the hollow scaffold of an artificial bone. Neovascularization at the bone defect position was histologically examined in samples collected 2, 4, 6, and 8 weeks after the operation. The cellular magnetofection rate of superparamagnetic chitosan nanoparticles/plasmid (pReceiver‐M29‐VEGF165/DH5a) complexes reached 1–3% under static magnetic field (SMF). Meanwhile, the optimal conditions for SPCPGM fabrication were 20% Fe3O4 (w/v), 4 mg of plasmid, 5.3 mg of glutaraldehyde, and 500 rpm of emulsification rotate speed. Under oscillating magnetic fields (OMFs), 4–6 μg of plasmids was released daily for 21 days. Under the combined application of SMF and OMF, evident neovascularization occurred at the bone defect position 6 weeks after the operation. This result is expected to provide a new type of angiogenesis strategy for the research of bone tissue engineering.</description><subject>Angiogenesis</subject><subject>Biomedical materials</subject><subject>Chitosan</subject><subject>Design optimization</subject><subject>Emulsification</subject><subject>Fabrication</subject><subject>Gelatin</subject><subject>Glutaraldehyde</subject><subject>In vivo methods and tests</subject><subject>Iron oxides</subject><subject>magnetic field</subject><subject>Magnetic fields</subject><subject>magnetic gene‐loaded microspheres</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Microspheres</subject><subject>Nanoparticles</subject><subject>Original Research Report</subject><subject>Original Research Reports</subject><subject>Plasmids</subject><subject>Tissue engineering</subject><subject>Vascularization</subject><subject>VEGF</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kcFu1DAQhiMEoqVw4o4scUFCu9hxUjsXJFpBoSrqBc7W2JkkXiV2sJ1W7YPwvHi7ZVU49OSx5tOn0f8XxWtG14zS8sNGT2u95lXVsCfFIavrclU1kj3dz4IfFC9i3GT4mNb8eXHAWR5qQQ-L35chDb73DkaSMCbSYrS9I50PJA1I_JzsZG8hWe-I70hcZgwzBJigd5isIWawyUdwZB4hTrYlPY4Zd2SyJvg4DxgwZhckMgc_-YTkCqJZRggPvBCS7ayx-QztHb4snnUwRnx1_x4VP798_nH6dXVxefbt9NPFylSyYSvQjcCubBlAV2ILFXJsZSU4aMNZYzTwWpS8NbLiiJ3mWkgqBMX8kcLU_Kj4uPPOi56wNehSgFHNwU4QbpQHq_7dODuo3l8pwaSoKpkF7-4Fwf9acoBqstHgOIJDv0RVclpTzljdZPTtf-jGLyEHv6WkLEteH9NMvd9R2_BiwG5_DKNq27fKfSut7vrO9JuH9-_ZvwVnoNwB13bEm8dc6vzk-8nO-geiYrzi</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Tao, Chen</creator><creator>Lina, Xie</creator><creator>Changxuan, Wang</creator><creator>Cong, Luo</creator><creator>Xiaolan, Yang</creator><creator>Tao, Huang</creator><creator>Hong, An</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8352-8892</orcidid></search><sort><creationdate>202005</creationdate><title>Orthogonal test design for the optimization of superparamagnetic chitosan plasmid gelatin microspheres that promote vascularization of artificial bone</title><author>Tao, Chen ; Lina, Xie ; Changxuan, Wang ; Cong, Luo ; Xiaolan, Yang ; Tao, Huang ; Hong, An</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4891-ab97ef2d1aaf2eda4e3ed8473abc319cba35723dc843eefb3b780770eeef87c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angiogenesis</topic><topic>Biomedical materials</topic><topic>Chitosan</topic><topic>Design optimization</topic><topic>Emulsification</topic><topic>Fabrication</topic><topic>Gelatin</topic><topic>Glutaraldehyde</topic><topic>In vivo methods and tests</topic><topic>Iron oxides</topic><topic>magnetic field</topic><topic>Magnetic fields</topic><topic>magnetic gene‐loaded microspheres</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Microspheres</topic><topic>Nanoparticles</topic><topic>Original Research Report</topic><topic>Original Research Reports</topic><topic>Plasmids</topic><topic>Tissue engineering</topic><topic>Vascularization</topic><topic>VEGF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Chen</creatorcontrib><creatorcontrib>Lina, Xie</creatorcontrib><creatorcontrib>Changxuan, Wang</creatorcontrib><creatorcontrib>Cong, Luo</creatorcontrib><creatorcontrib>Xiaolan, Yang</creatorcontrib><creatorcontrib>Tao, Huang</creatorcontrib><creatorcontrib>Hong, An</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Chen</au><au>Lina, Xie</au><au>Changxuan, Wang</au><au>Cong, Luo</au><au>Xiaolan, Yang</au><au>Tao, Huang</au><au>Hong, An</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal test design for the optimization of superparamagnetic chitosan plasmid gelatin microspheres that promote vascularization of artificial bone</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2020-05</date><risdate>2020</risdate><volume>108</volume><issue>4</issue><spage>1439</spage><epage>1449</epage><pages>1439-1449</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>The optimal conditions for the preparation of superparamagnetic chitosan plasmid (pReceiver‐M29‐VEGF165/DH5a) gelatin microspheres (SPCPGMs) were determined. Then, the performance of the SPCPGMs during neovascularization was evaluated in vivo. The SPCPGMs were prepared through a cross‐linking curing method and then filled into the hollow scaffold of an artificial bone. Neovascularization at the bone defect position was histologically examined in samples collected 2, 4, 6, and 8 weeks after the operation. The cellular magnetofection rate of superparamagnetic chitosan nanoparticles/plasmid (pReceiver‐M29‐VEGF165/DH5a) complexes reached 1–3% under static magnetic field (SMF). Meanwhile, the optimal conditions for SPCPGM fabrication were 20% Fe3O4 (w/v), 4 mg of plasmid, 5.3 mg of glutaraldehyde, and 500 rpm of emulsification rotate speed. Under oscillating magnetic fields (OMFs), 4–6 μg of plasmids was released daily for 21 days. Under the combined application of SMF and OMF, evident neovascularization occurred at the bone defect position 6 weeks after the operation. This result is expected to provide a new type of angiogenesis strategy for the research of bone tissue engineering.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31605570</pmid><doi>10.1002/jbm.b.34491</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8352-8892</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4973 |
ispartof | Journal of biomedical materials research. Part B, Applied biomaterials, 2020-05, Vol.108 (4), p.1439-1449 |
issn | 1552-4973 1552-4981 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7187448 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Angiogenesis Biomedical materials Chitosan Design optimization Emulsification Fabrication Gelatin Glutaraldehyde In vivo methods and tests Iron oxides magnetic field Magnetic fields magnetic gene‐loaded microspheres Materials research Materials science Microspheres Nanoparticles Original Research Report Original Research Reports Plasmids Tissue engineering Vascularization VEGF |
title | Orthogonal test design for the optimization of superparamagnetic chitosan plasmid gelatin microspheres that promote vascularization of artificial bone |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20test%20design%20for%20the%20optimization%20of%20superparamagnetic%20chitosan%20plasmid%20gelatin%20microspheres%20that%20promote%20vascularization%20of%20artificial%20bone&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Tao,%20Chen&rft.date=2020-05&rft.volume=108&rft.issue=4&rft.spage=1439&rft.epage=1449&rft.pages=1439-1449&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34491&rft_dat=%3Cproquest_pubme%3E2305031159%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4891-ab97ef2d1aaf2eda4e3ed8473abc319cba35723dc843eefb3b780770eeef87c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2388223560&rft_id=info:pmid/31605570&rfr_iscdi=true |