Loading…

Orthogonal test design for the optimization of superparamagnetic chitosan plasmid gelatin microspheres that promote vascularization of artificial bone

The optimal conditions for the preparation of superparamagnetic chitosan plasmid (pReceiver‐M29‐VEGF165/DH5a) gelatin microspheres (SPCPGMs) were determined. Then, the performance of the SPCPGMs during neovascularization was evaluated in vivo. The SPCPGMs were prepared through a cross‐linking curing...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2020-05, Vol.108 (4), p.1439-1449
Main Authors: Tao, Chen, Lina, Xie, Changxuan, Wang, Cong, Luo, Xiaolan, Yang, Tao, Huang, Hong, An
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4891-ab97ef2d1aaf2eda4e3ed8473abc319cba35723dc843eefb3b780770eeef87c53
cites cdi_FETCH-LOGICAL-c4891-ab97ef2d1aaf2eda4e3ed8473abc319cba35723dc843eefb3b780770eeef87c53
container_end_page 1449
container_issue 4
container_start_page 1439
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 108
creator Tao, Chen
Lina, Xie
Changxuan, Wang
Cong, Luo
Xiaolan, Yang
Tao, Huang
Hong, An
description The optimal conditions for the preparation of superparamagnetic chitosan plasmid (pReceiver‐M29‐VEGF165/DH5a) gelatin microspheres (SPCPGMs) were determined. Then, the performance of the SPCPGMs during neovascularization was evaluated in vivo. The SPCPGMs were prepared through a cross‐linking curing method and then filled into the hollow scaffold of an artificial bone. Neovascularization at the bone defect position was histologically examined in samples collected 2, 4, 6, and 8 weeks after the operation. The cellular magnetofection rate of superparamagnetic chitosan nanoparticles/plasmid (pReceiver‐M29‐VEGF165/DH5a) complexes reached 1–3% under static magnetic field (SMF). Meanwhile, the optimal conditions for SPCPGM fabrication were 20% Fe3O4 (w/v), 4 mg of plasmid, 5.3 mg of glutaraldehyde, and 500 rpm of emulsification rotate speed. Under oscillating magnetic fields (OMFs), 4–6 μg of plasmids was released daily for 21 days. Under the combined application of SMF and OMF, evident neovascularization occurred at the bone defect position 6 weeks after the operation. This result is expected to provide a new type of angiogenesis strategy for the research of bone tissue engineering.
doi_str_mv 10.1002/jbm.b.34491
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7187448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305031159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4891-ab97ef2d1aaf2eda4e3ed8473abc319cba35723dc843eefb3b780770eeef87c53</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhiMEoqVw4o4scUFCu9hxUjsXJFpBoSrqBc7W2JkkXiV2sJ1W7YPwvHi7ZVU49OSx5tOn0f8XxWtG14zS8sNGT2u95lXVsCfFIavrclU1kj3dz4IfFC9i3GT4mNb8eXHAWR5qQQ-L35chDb73DkaSMCbSYrS9I50PJA1I_JzsZG8hWe-I70hcZgwzBJigd5isIWawyUdwZB4hTrYlPY4Zd2SyJvg4DxgwZhckMgc_-YTkCqJZRggPvBCS7ayx-QztHb4snnUwRnx1_x4VP798_nH6dXVxefbt9NPFylSyYSvQjcCubBlAV2ILFXJsZSU4aMNZYzTwWpS8NbLiiJ3mWkgqBMX8kcLU_Kj4uPPOi56wNehSgFHNwU4QbpQHq_7dODuo3l8pwaSoKpkF7-4Fwf9acoBqstHgOIJDv0RVclpTzljdZPTtf-jGLyEHv6WkLEteH9NMvd9R2_BiwG5_DKNq27fKfSut7vrO9JuH9-_ZvwVnoNwB13bEm8dc6vzk-8nO-geiYrzi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388223560</pqid></control><display><type>article</type><title>Orthogonal test design for the optimization of superparamagnetic chitosan plasmid gelatin microspheres that promote vascularization of artificial bone</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Tao, Chen ; Lina, Xie ; Changxuan, Wang ; Cong, Luo ; Xiaolan, Yang ; Tao, Huang ; Hong, An</creator><creatorcontrib>Tao, Chen ; Lina, Xie ; Changxuan, Wang ; Cong, Luo ; Xiaolan, Yang ; Tao, Huang ; Hong, An</creatorcontrib><description>The optimal conditions for the preparation of superparamagnetic chitosan plasmid (pReceiver‐M29‐VEGF165/DH5a) gelatin microspheres (SPCPGMs) were determined. Then, the performance of the SPCPGMs during neovascularization was evaluated in vivo. The SPCPGMs were prepared through a cross‐linking curing method and then filled into the hollow scaffold of an artificial bone. Neovascularization at the bone defect position was histologically examined in samples collected 2, 4, 6, and 8 weeks after the operation. The cellular magnetofection rate of superparamagnetic chitosan nanoparticles/plasmid (pReceiver‐M29‐VEGF165/DH5a) complexes reached 1–3% under static magnetic field (SMF). Meanwhile, the optimal conditions for SPCPGM fabrication were 20% Fe3O4 (w/v), 4 mg of plasmid, 5.3 mg of glutaraldehyde, and 500 rpm of emulsification rotate speed. Under oscillating magnetic fields (OMFs), 4–6 μg of plasmids was released daily for 21 days. Under the combined application of SMF and OMF, evident neovascularization occurred at the bone defect position 6 weeks after the operation. This result is expected to provide a new type of angiogenesis strategy for the research of bone tissue engineering.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34491</identifier><identifier>PMID: 31605570</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Angiogenesis ; Biomedical materials ; Chitosan ; Design optimization ; Emulsification ; Fabrication ; Gelatin ; Glutaraldehyde ; In vivo methods and tests ; Iron oxides ; magnetic field ; Magnetic fields ; magnetic gene‐loaded microspheres ; Materials research ; Materials science ; Microspheres ; Nanoparticles ; Original Research Report ; Original Research Reports ; Plasmids ; Tissue engineering ; Vascularization ; VEGF</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2020-05, Vol.108 (4), p.1439-1449</ispartof><rights>2019 The Authors. published by Wiley Periodicals, Inc.</rights><rights>2019 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4891-ab97ef2d1aaf2eda4e3ed8473abc319cba35723dc843eefb3b780770eeef87c53</citedby><cites>FETCH-LOGICAL-c4891-ab97ef2d1aaf2eda4e3ed8473abc319cba35723dc843eefb3b780770eeef87c53</cites><orcidid>0000-0002-8352-8892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31605570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tao, Chen</creatorcontrib><creatorcontrib>Lina, Xie</creatorcontrib><creatorcontrib>Changxuan, Wang</creatorcontrib><creatorcontrib>Cong, Luo</creatorcontrib><creatorcontrib>Xiaolan, Yang</creatorcontrib><creatorcontrib>Tao, Huang</creatorcontrib><creatorcontrib>Hong, An</creatorcontrib><title>Orthogonal test design for the optimization of superparamagnetic chitosan plasmid gelatin microspheres that promote vascularization of artificial bone</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>The optimal conditions for the preparation of superparamagnetic chitosan plasmid (pReceiver‐M29‐VEGF165/DH5a) gelatin microspheres (SPCPGMs) were determined. Then, the performance of the SPCPGMs during neovascularization was evaluated in vivo. The SPCPGMs were prepared through a cross‐linking curing method and then filled into the hollow scaffold of an artificial bone. Neovascularization at the bone defect position was histologically examined in samples collected 2, 4, 6, and 8 weeks after the operation. The cellular magnetofection rate of superparamagnetic chitosan nanoparticles/plasmid (pReceiver‐M29‐VEGF165/DH5a) complexes reached 1–3% under static magnetic field (SMF). Meanwhile, the optimal conditions for SPCPGM fabrication were 20% Fe3O4 (w/v), 4 mg of plasmid, 5.3 mg of glutaraldehyde, and 500 rpm of emulsification rotate speed. Under oscillating magnetic fields (OMFs), 4–6 μg of plasmids was released daily for 21 days. Under the combined application of SMF and OMF, evident neovascularization occurred at the bone defect position 6 weeks after the operation. This result is expected to provide a new type of angiogenesis strategy for the research of bone tissue engineering.</description><subject>Angiogenesis</subject><subject>Biomedical materials</subject><subject>Chitosan</subject><subject>Design optimization</subject><subject>Emulsification</subject><subject>Fabrication</subject><subject>Gelatin</subject><subject>Glutaraldehyde</subject><subject>In vivo methods and tests</subject><subject>Iron oxides</subject><subject>magnetic field</subject><subject>Magnetic fields</subject><subject>magnetic gene‐loaded microspheres</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Microspheres</subject><subject>Nanoparticles</subject><subject>Original Research Report</subject><subject>Original Research Reports</subject><subject>Plasmids</subject><subject>Tissue engineering</subject><subject>Vascularization</subject><subject>VEGF</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kcFu1DAQhiMEoqVw4o4scUFCu9hxUjsXJFpBoSrqBc7W2JkkXiV2sJ1W7YPwvHi7ZVU49OSx5tOn0f8XxWtG14zS8sNGT2u95lXVsCfFIavrclU1kj3dz4IfFC9i3GT4mNb8eXHAWR5qQQ-L35chDb73DkaSMCbSYrS9I50PJA1I_JzsZG8hWe-I70hcZgwzBJigd5isIWawyUdwZB4hTrYlPY4Zd2SyJvg4DxgwZhckMgc_-YTkCqJZRggPvBCS7ayx-QztHb4snnUwRnx1_x4VP798_nH6dXVxefbt9NPFylSyYSvQjcCubBlAV2ILFXJsZSU4aMNZYzTwWpS8NbLiiJ3mWkgqBMX8kcLU_Kj4uPPOi56wNehSgFHNwU4QbpQHq_7dODuo3l8pwaSoKpkF7-4Fwf9acoBqstHgOIJDv0RVclpTzljdZPTtf-jGLyEHv6WkLEteH9NMvd9R2_BiwG5_DKNq27fKfSut7vrO9JuH9-_ZvwVnoNwB13bEm8dc6vzk-8nO-geiYrzi</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Tao, Chen</creator><creator>Lina, Xie</creator><creator>Changxuan, Wang</creator><creator>Cong, Luo</creator><creator>Xiaolan, Yang</creator><creator>Tao, Huang</creator><creator>Hong, An</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8352-8892</orcidid></search><sort><creationdate>202005</creationdate><title>Orthogonal test design for the optimization of superparamagnetic chitosan plasmid gelatin microspheres that promote vascularization of artificial bone</title><author>Tao, Chen ; Lina, Xie ; Changxuan, Wang ; Cong, Luo ; Xiaolan, Yang ; Tao, Huang ; Hong, An</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4891-ab97ef2d1aaf2eda4e3ed8473abc319cba35723dc843eefb3b780770eeef87c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angiogenesis</topic><topic>Biomedical materials</topic><topic>Chitosan</topic><topic>Design optimization</topic><topic>Emulsification</topic><topic>Fabrication</topic><topic>Gelatin</topic><topic>Glutaraldehyde</topic><topic>In vivo methods and tests</topic><topic>Iron oxides</topic><topic>magnetic field</topic><topic>Magnetic fields</topic><topic>magnetic gene‐loaded microspheres</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Microspheres</topic><topic>Nanoparticles</topic><topic>Original Research Report</topic><topic>Original Research Reports</topic><topic>Plasmids</topic><topic>Tissue engineering</topic><topic>Vascularization</topic><topic>VEGF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Chen</creatorcontrib><creatorcontrib>Lina, Xie</creatorcontrib><creatorcontrib>Changxuan, Wang</creatorcontrib><creatorcontrib>Cong, Luo</creatorcontrib><creatorcontrib>Xiaolan, Yang</creatorcontrib><creatorcontrib>Tao, Huang</creatorcontrib><creatorcontrib>Hong, An</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Chen</au><au>Lina, Xie</au><au>Changxuan, Wang</au><au>Cong, Luo</au><au>Xiaolan, Yang</au><au>Tao, Huang</au><au>Hong, An</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal test design for the optimization of superparamagnetic chitosan plasmid gelatin microspheres that promote vascularization of artificial bone</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2020-05</date><risdate>2020</risdate><volume>108</volume><issue>4</issue><spage>1439</spage><epage>1449</epage><pages>1439-1449</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>The optimal conditions for the preparation of superparamagnetic chitosan plasmid (pReceiver‐M29‐VEGF165/DH5a) gelatin microspheres (SPCPGMs) were determined. Then, the performance of the SPCPGMs during neovascularization was evaluated in vivo. The SPCPGMs were prepared through a cross‐linking curing method and then filled into the hollow scaffold of an artificial bone. Neovascularization at the bone defect position was histologically examined in samples collected 2, 4, 6, and 8 weeks after the operation. The cellular magnetofection rate of superparamagnetic chitosan nanoparticles/plasmid (pReceiver‐M29‐VEGF165/DH5a) complexes reached 1–3% under static magnetic field (SMF). Meanwhile, the optimal conditions for SPCPGM fabrication were 20% Fe3O4 (w/v), 4 mg of plasmid, 5.3 mg of glutaraldehyde, and 500 rpm of emulsification rotate speed. Under oscillating magnetic fields (OMFs), 4–6 μg of plasmids was released daily for 21 days. Under the combined application of SMF and OMF, evident neovascularization occurred at the bone defect position 6 weeks after the operation. This result is expected to provide a new type of angiogenesis strategy for the research of bone tissue engineering.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31605570</pmid><doi>10.1002/jbm.b.34491</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8352-8892</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2020-05, Vol.108 (4), p.1439-1449
issn 1552-4973
1552-4981
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7187448
source Wiley-Blackwell Read & Publish Collection
subjects Angiogenesis
Biomedical materials
Chitosan
Design optimization
Emulsification
Fabrication
Gelatin
Glutaraldehyde
In vivo methods and tests
Iron oxides
magnetic field
Magnetic fields
magnetic gene‐loaded microspheres
Materials research
Materials science
Microspheres
Nanoparticles
Original Research Report
Original Research Reports
Plasmids
Tissue engineering
Vascularization
VEGF
title Orthogonal test design for the optimization of superparamagnetic chitosan plasmid gelatin microspheres that promote vascularization of artificial bone
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20test%20design%20for%20the%20optimization%20of%20superparamagnetic%20chitosan%20plasmid%20gelatin%20microspheres%20that%20promote%20vascularization%20of%20artificial%20bone&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Tao,%20Chen&rft.date=2020-05&rft.volume=108&rft.issue=4&rft.spage=1439&rft.epage=1449&rft.pages=1439-1449&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34491&rft_dat=%3Cproquest_pubme%3E2305031159%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4891-ab97ef2d1aaf2eda4e3ed8473abc319cba35723dc843eefb3b780770eeef87c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2388223560&rft_id=info:pmid/31605570&rfr_iscdi=true