Loading…

Age-related macular degeneration (AMD) mitochondria modulate epigenetic mechanisms in retinal pigment epithelial cells

Mitochondrial damage and epigenetic modifications have been implicated in the pathogenesis of Age-related Macular Degeneration (AMD). This study was designed to investigate the effects of AMD/normal mitochondria on epigenetic regulation in human transmitochondrial retinal pigment epithelial (RPE) ce...

Full description

Saved in:
Bibliographic Details
Published in:Experimental eye research 2019-12, Vol.189, p.107701-107701, Article 107701
Main Authors: Nashine, Sonali, Nesburn, Anthony B., Kuppermann, Baruch D., Kenney, M. Cristina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mitochondrial damage and epigenetic modifications have been implicated in the pathogenesis of Age-related Macular Degeneration (AMD). This study was designed to investigate the effects of AMD/normal mitochondria on epigenetic regulation in human transmitochondrial retinal pigment epithelial (RPE) cells in vitro. Human RPE cybrid cell lines were created by fusing mitochondria-deficient (Rho0) ARPE-19 cells with platelets obtained from either AMD patients (AMD cybrids) or normal subjects (normal cybrids). Therefore, all cybrids had identical nuclei (derived from ARPE-19 cells) but mitochondria derived from either AMD patients or age-matched normal subjects. AMD cybrids demonstrated increased RNA/protein levels for five methylation-related and four acetylation-related genes, along with lower levels of two methylation and three acetylation genes compared to normal cybrids. Demethylation using 5-Aza-2′-deoxycytidine (DAC) led to decreased expression of VEGF-A gene in AMD cells. Trichostatin A (TSA), an HDAC inhibitor, also influenced protein levels of VEGF-A, HIF1α, NFκB, and CFH in AMD cells. Our findings suggest that retrograde signaling leads to mitochondria-nucleus interactions that influence the epigenetic status of the RPE cells and this may help in the identification of future potential therapeutic targets for AMD. •AMD mitochondria regulate epigenetic mechanisms i.e., methylation and acetylation.•Demethylation using DAC affects VEGF-A gene expression in AMD cells.•DAC and TSA could be potential targets for therapeutic intervention in AMD.
ISSN:0014-4835
1096-0007
DOI:10.1016/j.exer.2019.107701