Loading…

Detecting cortical circuits resonant to high-frequency oscillations in the human primary motor cortex: a TMS-tACS study

Corticospinal volleys evoked by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) consist of high-frequency bursts (≈667 and ≈333 Hz). However, intracortical circuits producing such corticospinal high-frequency bursts are unknown. We here investigated whether neurons activat...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-05, Vol.10 (1), p.7695-7695, Article 7695
Main Authors: Guerra, Andrea, Ranieri, Federico, Falato, Emma, Musumeci, Gabriella, Di Santo, Alessandro, Asci, Francesco, Di Pino, Giovanni, Suppa, Antonio, Berardelli, Alfredo, Di Lazzaro, Vincenzo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-5d87891dc27b4030da75e1bc12edce88657eb8bf2163e1d0d500f7745d13cd783
cites cdi_FETCH-LOGICAL-c540t-5d87891dc27b4030da75e1bc12edce88657eb8bf2163e1d0d500f7745d13cd783
container_end_page 7695
container_issue 1
container_start_page 7695
container_title Scientific reports
container_volume 10
creator Guerra, Andrea
Ranieri, Federico
Falato, Emma
Musumeci, Gabriella
Di Santo, Alessandro
Asci, Francesco
Di Pino, Giovanni
Suppa, Antonio
Berardelli, Alfredo
Di Lazzaro, Vincenzo
description Corticospinal volleys evoked by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) consist of high-frequency bursts (≈667 and ≈333 Hz). However, intracortical circuits producing such corticospinal high-frequency bursts are unknown. We here investigated whether neurons activated by single TMS pulses over M1 are resonant to high-frequency oscillations, using a combined transcranial alternating current stimulation (tACS)-TMS approach. We applied 667, 333 Hz or sham-tACS and, concurrently, we delivered six single-pulse TMS protocols using monophasic or biphasic pulses, different stimulation intensities, muscular states, types and orientations of coils. We recorded motor evoked potentials (MEPs) before, during and after tACS. 333 Hz tACS facilitated MEPs evoked by biphasic TMS through a figure-of-eight coil at active motor threshold (AMT), and by monophasic TMS with anterior-to-posterior-induced current in the brain. 333 Hz tACS also facilitated MEPs evoked by monophasic TMS through a circular coil at AMT, an effect that weakly persisted after the stimulation. 667 Hz tACS had no effects. 333 Hz, but not 667 Hz, tACS may have reinforced the synchronization of specific neurons to high-frequency oscillations enhancing this activity, and facilitating MEPs. Our findings suggest that different bursting modes of corticospinal neurons are produced by separate circuits with different oscillatory properties.
doi_str_mv 10.1038/s41598-020-64717-7
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7203184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399836526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-5d87891dc27b4030da75e1bc12edce88657eb8bf2163e1d0d500f7745d13cd783</originalsourceid><addsrcrecordid>eNp9kU1vFSEYhYmxsU3bP-DCkLhxg_I5MC5Mmutn0sZF65owDHOHZgYqMOr993I_bKsL2UDyPu_hnBwAnhP8mmCm3mRORKsQphg1XBKJ5BNwQjEXiDJKnz56H4PznG9xPYK2nLTPwDGjTDYtb07Az_euOFt8WEMbU_HWTND6ZBdfMkwux2BCgSXC0a9HNCT3fXHBbmDM1k-TKT6GDH2AZXRwXGYT4F3ys0kbOMcS007U_XoLDby5ukblYnUNc1n6zRk4GsyU3fnhPgXfPn64WX1Gl18_fVldXCIrOC5I9EqqlvSWyo5jhnsjhSOdJdT11inVCOk61Q2UNMyRHvcC40FKLnrCbC8VOwXv9rp3Szdvd0JJZtIHkzoar_-eBD_qdfyhJcWMKF4FXh0EUqzZc9Gzz9bV7MHFJWvK2laxRtCmoi__QW_jkkKNt6MowZRsHdE9ZVPMObnh3gzBelut3lera7V6V62WdenF4xj3K3-KrADbA7mOwtqlh7__I_sbEVaw3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399210218</pqid></control><display><type>article</type><title>Detecting cortical circuits resonant to high-frequency oscillations in the human primary motor cortex: a TMS-tACS study</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Guerra, Andrea ; Ranieri, Federico ; Falato, Emma ; Musumeci, Gabriella ; Di Santo, Alessandro ; Asci, Francesco ; Di Pino, Giovanni ; Suppa, Antonio ; Berardelli, Alfredo ; Di Lazzaro, Vincenzo</creator><creatorcontrib>Guerra, Andrea ; Ranieri, Federico ; Falato, Emma ; Musumeci, Gabriella ; Di Santo, Alessandro ; Asci, Francesco ; Di Pino, Giovanni ; Suppa, Antonio ; Berardelli, Alfredo ; Di Lazzaro, Vincenzo</creatorcontrib><description>Corticospinal volleys evoked by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) consist of high-frequency bursts (≈667 and ≈333 Hz). However, intracortical circuits producing such corticospinal high-frequency bursts are unknown. We here investigated whether neurons activated by single TMS pulses over M1 are resonant to high-frequency oscillations, using a combined transcranial alternating current stimulation (tACS)-TMS approach. We applied 667, 333 Hz or sham-tACS and, concurrently, we delivered six single-pulse TMS protocols using monophasic or biphasic pulses, different stimulation intensities, muscular states, types and orientations of coils. We recorded motor evoked potentials (MEPs) before, during and after tACS. 333 Hz tACS facilitated MEPs evoked by biphasic TMS through a figure-of-eight coil at active motor threshold (AMT), and by monophasic TMS with anterior-to-posterior-induced current in the brain. 333 Hz tACS also facilitated MEPs evoked by monophasic TMS through a circular coil at AMT, an effect that weakly persisted after the stimulation. 667 Hz tACS had no effects. 333 Hz, but not 667 Hz, tACS may have reinforced the synchronization of specific neurons to high-frequency oscillations enhancing this activity, and facilitating MEPs. Our findings suggest that different bursting modes of corticospinal neurons are produced by separate circuits with different oscillatory properties.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-64717-7</identifier><identifier>PMID: 32376946</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1697 ; 631/378/2632/1663 ; 631/378/3920 ; Adult ; Circuits ; Cortex (motor) ; Electromyography ; Evoked Potentials, Motor - physiology ; Female ; Humanities and Social Sciences ; Humans ; Magnetic fields ; Male ; Motor Cortex - physiology ; Motor evoked potentials ; multidisciplinary ; Muscle, Skeletal - physiology ; Nerve Net - physiology ; Neurons ; Neurons - physiology ; Oscillations ; Pyramidal tracts ; Science ; Science (multidisciplinary) ; Synchronization ; Transcranial Direct Current Stimulation ; Transcranial Magnetic Stimulation ; Young Adult</subject><ispartof>Scientific reports, 2020-05, Vol.10 (1), p.7695-7695, Article 7695</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-5d87891dc27b4030da75e1bc12edce88657eb8bf2163e1d0d500f7745d13cd783</citedby><cites>FETCH-LOGICAL-c540t-5d87891dc27b4030da75e1bc12edce88657eb8bf2163e1d0d500f7745d13cd783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2399210218/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2399210218?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32376946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guerra, Andrea</creatorcontrib><creatorcontrib>Ranieri, Federico</creatorcontrib><creatorcontrib>Falato, Emma</creatorcontrib><creatorcontrib>Musumeci, Gabriella</creatorcontrib><creatorcontrib>Di Santo, Alessandro</creatorcontrib><creatorcontrib>Asci, Francesco</creatorcontrib><creatorcontrib>Di Pino, Giovanni</creatorcontrib><creatorcontrib>Suppa, Antonio</creatorcontrib><creatorcontrib>Berardelli, Alfredo</creatorcontrib><creatorcontrib>Di Lazzaro, Vincenzo</creatorcontrib><title>Detecting cortical circuits resonant to high-frequency oscillations in the human primary motor cortex: a TMS-tACS study</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Corticospinal volleys evoked by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) consist of high-frequency bursts (≈667 and ≈333 Hz). However, intracortical circuits producing such corticospinal high-frequency bursts are unknown. We here investigated whether neurons activated by single TMS pulses over M1 are resonant to high-frequency oscillations, using a combined transcranial alternating current stimulation (tACS)-TMS approach. We applied 667, 333 Hz or sham-tACS and, concurrently, we delivered six single-pulse TMS protocols using monophasic or biphasic pulses, different stimulation intensities, muscular states, types and orientations of coils. We recorded motor evoked potentials (MEPs) before, during and after tACS. 333 Hz tACS facilitated MEPs evoked by biphasic TMS through a figure-of-eight coil at active motor threshold (AMT), and by monophasic TMS with anterior-to-posterior-induced current in the brain. 333 Hz tACS also facilitated MEPs evoked by monophasic TMS through a circular coil at AMT, an effect that weakly persisted after the stimulation. 667 Hz tACS had no effects. 333 Hz, but not 667 Hz, tACS may have reinforced the synchronization of specific neurons to high-frequency oscillations enhancing this activity, and facilitating MEPs. Our findings suggest that different bursting modes of corticospinal neurons are produced by separate circuits with different oscillatory properties.</description><subject>631/378/1697</subject><subject>631/378/2632/1663</subject><subject>631/378/3920</subject><subject>Adult</subject><subject>Circuits</subject><subject>Cortex (motor)</subject><subject>Electromyography</subject><subject>Evoked Potentials, Motor - physiology</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Magnetic fields</subject><subject>Male</subject><subject>Motor Cortex - physiology</subject><subject>Motor evoked potentials</subject><subject>multidisciplinary</subject><subject>Muscle, Skeletal - physiology</subject><subject>Nerve Net - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Oscillations</subject><subject>Pyramidal tracts</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synchronization</subject><subject>Transcranial Direct Current Stimulation</subject><subject>Transcranial Magnetic Stimulation</subject><subject>Young Adult</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU1vFSEYhYmxsU3bP-DCkLhxg_I5MC5Mmutn0sZF65owDHOHZgYqMOr993I_bKsL2UDyPu_hnBwAnhP8mmCm3mRORKsQphg1XBKJ5BNwQjEXiDJKnz56H4PznG9xPYK2nLTPwDGjTDYtb07Az_euOFt8WEMbU_HWTND6ZBdfMkwux2BCgSXC0a9HNCT3fXHBbmDM1k-TKT6GDH2AZXRwXGYT4F3ys0kbOMcS007U_XoLDby5ukblYnUNc1n6zRk4GsyU3fnhPgXfPn64WX1Gl18_fVldXCIrOC5I9EqqlvSWyo5jhnsjhSOdJdT11inVCOk61Q2UNMyRHvcC40FKLnrCbC8VOwXv9rp3Szdvd0JJZtIHkzoar_-eBD_qdfyhJcWMKF4FXh0EUqzZc9Gzz9bV7MHFJWvK2laxRtCmoi__QW_jkkKNt6MowZRsHdE9ZVPMObnh3gzBelut3lera7V6V62WdenF4xj3K3-KrADbA7mOwtqlh7__I_sbEVaw3A</recordid><startdate>20200506</startdate><enddate>20200506</enddate><creator>Guerra, Andrea</creator><creator>Ranieri, Federico</creator><creator>Falato, Emma</creator><creator>Musumeci, Gabriella</creator><creator>Di Santo, Alessandro</creator><creator>Asci, Francesco</creator><creator>Di Pino, Giovanni</creator><creator>Suppa, Antonio</creator><creator>Berardelli, Alfredo</creator><creator>Di Lazzaro, Vincenzo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200506</creationdate><title>Detecting cortical circuits resonant to high-frequency oscillations in the human primary motor cortex: a TMS-tACS study</title><author>Guerra, Andrea ; Ranieri, Federico ; Falato, Emma ; Musumeci, Gabriella ; Di Santo, Alessandro ; Asci, Francesco ; Di Pino, Giovanni ; Suppa, Antonio ; Berardelli, Alfredo ; Di Lazzaro, Vincenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-5d87891dc27b4030da75e1bc12edce88657eb8bf2163e1d0d500f7745d13cd783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/378/1697</topic><topic>631/378/2632/1663</topic><topic>631/378/3920</topic><topic>Adult</topic><topic>Circuits</topic><topic>Cortex (motor)</topic><topic>Electromyography</topic><topic>Evoked Potentials, Motor - physiology</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Magnetic fields</topic><topic>Male</topic><topic>Motor Cortex - physiology</topic><topic>Motor evoked potentials</topic><topic>multidisciplinary</topic><topic>Muscle, Skeletal - physiology</topic><topic>Nerve Net - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Oscillations</topic><topic>Pyramidal tracts</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synchronization</topic><topic>Transcranial Direct Current Stimulation</topic><topic>Transcranial Magnetic Stimulation</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guerra, Andrea</creatorcontrib><creatorcontrib>Ranieri, Federico</creatorcontrib><creatorcontrib>Falato, Emma</creatorcontrib><creatorcontrib>Musumeci, Gabriella</creatorcontrib><creatorcontrib>Di Santo, Alessandro</creatorcontrib><creatorcontrib>Asci, Francesco</creatorcontrib><creatorcontrib>Di Pino, Giovanni</creatorcontrib><creatorcontrib>Suppa, Antonio</creatorcontrib><creatorcontrib>Berardelli, Alfredo</creatorcontrib><creatorcontrib>Di Lazzaro, Vincenzo</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guerra, Andrea</au><au>Ranieri, Federico</au><au>Falato, Emma</au><au>Musumeci, Gabriella</au><au>Di Santo, Alessandro</au><au>Asci, Francesco</au><au>Di Pino, Giovanni</au><au>Suppa, Antonio</au><au>Berardelli, Alfredo</au><au>Di Lazzaro, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting cortical circuits resonant to high-frequency oscillations in the human primary motor cortex: a TMS-tACS study</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-05-06</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>7695</spage><epage>7695</epage><pages>7695-7695</pages><artnum>7695</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Corticospinal volleys evoked by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) consist of high-frequency bursts (≈667 and ≈333 Hz). However, intracortical circuits producing such corticospinal high-frequency bursts are unknown. We here investigated whether neurons activated by single TMS pulses over M1 are resonant to high-frequency oscillations, using a combined transcranial alternating current stimulation (tACS)-TMS approach. We applied 667, 333 Hz or sham-tACS and, concurrently, we delivered six single-pulse TMS protocols using monophasic or biphasic pulses, different stimulation intensities, muscular states, types and orientations of coils. We recorded motor evoked potentials (MEPs) before, during and after tACS. 333 Hz tACS facilitated MEPs evoked by biphasic TMS through a figure-of-eight coil at active motor threshold (AMT), and by monophasic TMS with anterior-to-posterior-induced current in the brain. 333 Hz tACS also facilitated MEPs evoked by monophasic TMS through a circular coil at AMT, an effect that weakly persisted after the stimulation. 667 Hz tACS had no effects. 333 Hz, but not 667 Hz, tACS may have reinforced the synchronization of specific neurons to high-frequency oscillations enhancing this activity, and facilitating MEPs. Our findings suggest that different bursting modes of corticospinal neurons are produced by separate circuits with different oscillatory properties.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32376946</pmid><doi>10.1038/s41598-020-64717-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-05, Vol.10 (1), p.7695-7695, Article 7695
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7203184
source ProQuest - Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/378/1697
631/378/2632/1663
631/378/3920
Adult
Circuits
Cortex (motor)
Electromyography
Evoked Potentials, Motor - physiology
Female
Humanities and Social Sciences
Humans
Magnetic fields
Male
Motor Cortex - physiology
Motor evoked potentials
multidisciplinary
Muscle, Skeletal - physiology
Nerve Net - physiology
Neurons
Neurons - physiology
Oscillations
Pyramidal tracts
Science
Science (multidisciplinary)
Synchronization
Transcranial Direct Current Stimulation
Transcranial Magnetic Stimulation
Young Adult
title Detecting cortical circuits resonant to high-frequency oscillations in the human primary motor cortex: a TMS-tACS study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20cortical%20circuits%20resonant%20to%20high-frequency%20oscillations%20in%20the%20human%20primary%20motor%20cortex:%20a%20TMS-tACS%20study&rft.jtitle=Scientific%20reports&rft.au=Guerra,%20Andrea&rft.date=2020-05-06&rft.volume=10&rft.issue=1&rft.spage=7695&rft.epage=7695&rft.pages=7695-7695&rft.artnum=7695&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-64717-7&rft_dat=%3Cproquest_pubme%3E2399836526%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-5d87891dc27b4030da75e1bc12edce88657eb8bf2163e1d0d500f7745d13cd783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2399210218&rft_id=info:pmid/32376946&rfr_iscdi=true