Loading…
Critical Behaviors in Contagion Dynamics
We study the critical behavior of a general contagion model where nodes are either active (e.g., with opinion A, or functioning) or inactive (e.g., with opinion B, or damaged). The transitions between these two states are determined by (i) spontaneous transitions independent of the neighborhood, (ii...
Saved in:
Published in: | Physical review letters 2017-02, Vol.118 (8), p.088301-088301, Article 088301 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the critical behavior of a general contagion model where nodes are either active (e.g., with opinion A, or functioning) or inactive (e.g., with opinion B, or damaged). The transitions between these two states are determined by (i) spontaneous transitions independent of the neighborhood, (ii) transitions induced by neighboring nodes, and (iii) spontaneous reverse transitions. The resulting dynamics is extremely rich including limit cycles and random phase switching. We derive a unifying mean-field theory. Specifically, we analytically show that the critical behavior of systems whose dynamics is governed by processes (i)-(iii) can only exhibit three distinct regimes: (a) uncorrelated spontaneous transition dynamics, (b) contact process dynamics, and (c) cusp catastrophes. This ends a long-standing debate on the universality classes of complex contagion dynamics in mean field and substantially deepens its mathematical understanding. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.118.088301 |