Loading…

Lipoprotein(a) plasma levels are not associated with incident microvascular complications in type 2 diabetes mellitus

Aims/hypothesis Microvascular disease in type 2 diabetes is a significant cause of end-stage renal disease, blindness and peripheral neuropathy. The strict control of known risk factors, e.g. lifestyle, hyperglycaemia, hypertension and dyslipidaemia, reduces the incidence of microvascular complicati...

Full description

Saved in:
Bibliographic Details
Published in:Diabetologia 2020-06, Vol.63 (6), p.1248-1257
Main Authors: Singh, Sunny S., Rashid, Mardin, Lieverse, Aloysius G., Kronenberg, Florian, Lamina, Claudia, Mulder, Monique T., de Rijke, Yolanda B., Sijbrands, Eric J. G., van Hoek, Mandy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aims/hypothesis Microvascular disease in type 2 diabetes is a significant cause of end-stage renal disease, blindness and peripheral neuropathy. The strict control of known risk factors, e.g. lifestyle, hyperglycaemia, hypertension and dyslipidaemia, reduces the incidence of microvascular complications, but a residual risk remains. Lipoprotein (a) [Lp(a)] is a strong risk factor for macrovascular disease in the general population. We hypothesised that plasma Lp(a) levels and the LPA gene SNPs rs10455872 and rs3798220 are associated with the incident development of microvascular complications in type 2 diabetes. Methods Analyses were performed of data from the DiaGene study, a prospective study for complications of type 2 diabetes, collected in the city of Eindhoven, the Netherlands ( n  = 1886 individuals with type 2 diabetes, mean follow-up time = 6.97 years). To assess the relationship between plasma Lp(a) levels and the LPA SNPs with each newly developed microvascular complication (retinopathy n  = 223, nephropathy n  = 246, neuropathy n  = 236), Cox proportional hazards models were applied and adjusted for risk factors for microvascular complications (age, sex, mean arterial pressure, non-HDL-cholesterol, HDL-cholesterol, BMI, duration of type 2 diabetes, HbA 1c and smoking). Results No significant associations of Lp(a) plasma levels and the LPA SNPs rs10455872 and rs3798220 with prevalent or incident microvascular complications in type 2 diabetes were found. In line with previous observations the LPA SNPs rs10455872 and rs3798220 did influence the plasma Lp(a) levels. Conclusions/interpretation Our data show no association between Lp(a) plasma levels and the LPA SNPs with known effect on Lp(a) plasma levels with the development of microvascular complications in type 2 diabetes. This indicates that Lp(a) does not play a major role in the development of microvascular complications. However, larger studies are needed to exclude minimal effects of Lp(a) on the development of microvascular complications.
ISSN:0012-186X
1432-0428
DOI:10.1007/s00125-020-05120-9