Loading…
A Series Registration Framework to Recover Resting-State Functional Magnetic Resonance Data Degraded By Motion
Data retention is a significant problem in the medical imaging domain. For example, resting-state functional magnetic resonance images (rs-fMRIs) are invaluable for studying neurodevelopment but are highly susceptible to corruption due to patient motion. The effects of patient motion can be reduced...
Saved in:
Published in: | AMIA Summits on Translational Science proceedings 2020, Vol.2020, p.569-578 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Data retention is a significant problem in the medical imaging domain. For example, resting-state functional magnetic resonance images (rs-fMRIs) are invaluable for studying neurodevelopment but are highly susceptible to corruption due to patient motion. The effects of patient motion can be reduced through post-acquisition techniques such as volume registration. Traditional volume registration minimizes the global differences between all volumes in the rs-fMRI sequence and a designated reference volume. We suggest using the spatiotemporal relationships between subsequent image volumes to inform the registration: they are used initialize each volume registration to reduce local differences between volumes while minimizing global differences. We apply both the traditional and novel registration methods to a set of healthy human neonatal rs-fMRIs with significant motion artifacts (N=17). Both methods impacted the mean and standard deviation of the image sequences' correlation ratio matrices similarly; however, the novel framework was more effective in meeting gold standard motion thresholds. |
---|---|
ISSN: | 2153-4063 2153-4063 |