Loading…

Physics of Nanomechanical Spectrometry of Viruses

There is an emerging need of nanotools able to quantify the mechanical properties of single biological entities. A promising approach is the measurement of the shifts of the resonant frequencies of ultrathin cantilevers induced by the adsorption of the studied biological systems. Here, we present a...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2014-08, Vol.4 (1), p.6051, Article 6051
Main Authors: Ruz, J. J., Tamayo, J., Pini, V., Kosaka, P. M., Calleja, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There is an emerging need of nanotools able to quantify the mechanical properties of single biological entities. A promising approach is the measurement of the shifts of the resonant frequencies of ultrathin cantilevers induced by the adsorption of the studied biological systems. Here, we present a detailed theoretical analysis to calculate the resonance frequency shift induced by the mechanical stiffness of viral nanotubes. The model accounts for the high surface-to-volume ratio featured by single biological entities, the shape anisotropy and the interfacial adhesion. The model is applied to the case in which tobacco mosaic virus is randomly delivered to a silicon nitride cantilever. The theoretical framework opens the door to a novel paradigm for biological spectrometry as well as for measuring the Young's modulus of biological systems with minimal strains.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep06051