Loading…

The predictable chaos of slow earthquakes

Slow earthquakes result from deterministic chaos and show predictability horizon time of the order of days to weeks. Slow earthquakes, like regular earthquakes, result from unstable frictional slip. They produce little slip and can therefore repeat frequently. We assess their predictability using th...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2020-07, Vol.6 (27)
Main Authors: Gualandi, A., Avouac, J.-P., Michel, S., Faranda, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-8ca6a6febc00ca53c16bfa127f2b9de4fd5f809a3a07bc735f18e000a88a23623
cites cdi_FETCH-LOGICAL-c401t-8ca6a6febc00ca53c16bfa127f2b9de4fd5f809a3a07bc735f18e000a88a23623
container_end_page
container_issue 27
container_start_page
container_title Science advances
container_volume 6
creator Gualandi, A.
Avouac, J.-P.
Michel, S.
Faranda, D.
description Slow earthquakes result from deterministic chaos and show predictability horizon time of the order of days to weeks. Slow earthquakes, like regular earthquakes, result from unstable frictional slip. They produce little slip and can therefore repeat frequently. We assess their predictability using the slip history of the Cascadia subduction between 2007 and 2017, during which slow earthquakes have repeatedly ruptured multiple segments. We characterize the system dynamics using embedding theory and extreme value theory. The analysis reveals a low-dimensional (
doi_str_mv 10.1126/sciadv.aaz5548
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7458452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2443879607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-8ca6a6febc00ca53c16bfa127f2b9de4fd5f809a3a07bc735f18e000a88a23623</originalsourceid><addsrcrecordid>eNpdkc1Lw0AQxRdRbKm9es7RHlL3M7u5CKWoFQpe6nmZbHZNNO22u2lF_3pTUkQ9zWPmzW8GHkLXBE8JodltNDWUhynAlxBcnaEhZVKktNPnv_QAjWN8wxgTnmWC5JdowGjOJOf5EE1WlU22wZa1aaFobGIq8DHxLomN_0gshLba7eHdxit04aCJdnyqI_TycL-aL9Ll8-PTfLZMDcekTZWBDDJnC4OxAcEMyQoHhEpHi7y03JXCKZwDAywLI5lwRNnuOVAKKMsoG6G7nrvdF2tbGrtpAzR6G-o1hE_todZ_J5u60q_-oCUXiosjYNIDqn9ri9lSH3uYKiUpJgfSeW9Ox4Lf7W1s9bqOxjYNbKzfR005Z0rmGZadddpbTfAxBut-2ATrYxy6j0Of4mDf7Y195w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443879607</pqid></control><display><type>article</type><title>The predictable chaos of slow earthquakes</title><source>American Association for the Advancement of Science</source><source>PMC (PubMed Central)</source><creator>Gualandi, A. ; Avouac, J.-P. ; Michel, S. ; Faranda, D.</creator><creatorcontrib>Gualandi, A. ; Avouac, J.-P. ; Michel, S. ; Faranda, D.</creatorcontrib><description>Slow earthquakes result from deterministic chaos and show predictability horizon time of the order of days to weeks. Slow earthquakes, like regular earthquakes, result from unstable frictional slip. They produce little slip and can therefore repeat frequently. We assess their predictability using the slip history of the Cascadia subduction between 2007 and 2017, during which slow earthquakes have repeatedly ruptured multiple segments. We characterize the system dynamics using embedding theory and extreme value theory. The analysis reveals a low-dimensional (&lt;5) nonlinear chaotic system rather than a stochastic system. We calculate properties of the underlying attractor like its correlation and instantaneous dimension, instantaneous persistence, and metric entropy. We infer that the system has a predictability horizon of the order of days weeks. For the better resolved segments, the onset of large slip events can be correctly forecasted by high values of the instantaneous dimension. Longer-term deterministic prediction seems intrinsically impossible. Regular earthquakes might similarly be predictable but with a limited predictable horizon of the order of their durations.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aaz5548</identifier><identifier>PMID: 32937449</identifier><language>eng</language><publisher>American Association for the Advancement of Science (AAAS)</publisher><subject>Chaotic Dynamics ; Dynamical Systems ; Earth Sciences ; Geophysics ; Mathematics ; Nonlinear Sciences ; SciAdv r-articles ; Sciences of the Universe</subject><ispartof>Science advances, 2020-07, Vol.6 (27)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-8ca6a6febc00ca53c16bfa127f2b9de4fd5f809a3a07bc735f18e000a88a23623</citedby><cites>FETCH-LOGICAL-c401t-8ca6a6febc00ca53c16bfa127f2b9de4fd5f809a3a07bc735f18e000a88a23623</cites><orcidid>0000-0002-3100-8932 ; 0000-0001-7878-6603 ; 0000-0002-3060-8442 ; 0000-0001-5001-5698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458452/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458452/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,2870,2871,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02887201$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gualandi, A.</creatorcontrib><creatorcontrib>Avouac, J.-P.</creatorcontrib><creatorcontrib>Michel, S.</creatorcontrib><creatorcontrib>Faranda, D.</creatorcontrib><title>The predictable chaos of slow earthquakes</title><title>Science advances</title><description>Slow earthquakes result from deterministic chaos and show predictability horizon time of the order of days to weeks. Slow earthquakes, like regular earthquakes, result from unstable frictional slip. They produce little slip and can therefore repeat frequently. We assess their predictability using the slip history of the Cascadia subduction between 2007 and 2017, during which slow earthquakes have repeatedly ruptured multiple segments. We characterize the system dynamics using embedding theory and extreme value theory. The analysis reveals a low-dimensional (&lt;5) nonlinear chaotic system rather than a stochastic system. We calculate properties of the underlying attractor like its correlation and instantaneous dimension, instantaneous persistence, and metric entropy. We infer that the system has a predictability horizon of the order of days weeks. For the better resolved segments, the onset of large slip events can be correctly forecasted by high values of the instantaneous dimension. Longer-term deterministic prediction seems intrinsically impossible. Regular earthquakes might similarly be predictable but with a limited predictable horizon of the order of their durations.</description><subject>Chaotic Dynamics</subject><subject>Dynamical Systems</subject><subject>Earth Sciences</subject><subject>Geophysics</subject><subject>Mathematics</subject><subject>Nonlinear Sciences</subject><subject>SciAdv r-articles</subject><subject>Sciences of the Universe</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1Lw0AQxRdRbKm9es7RHlL3M7u5CKWoFQpe6nmZbHZNNO22u2lF_3pTUkQ9zWPmzW8GHkLXBE8JodltNDWUhynAlxBcnaEhZVKktNPnv_QAjWN8wxgTnmWC5JdowGjOJOf5EE1WlU22wZa1aaFobGIq8DHxLomN_0gshLba7eHdxit04aCJdnyqI_TycL-aL9Ll8-PTfLZMDcekTZWBDDJnC4OxAcEMyQoHhEpHi7y03JXCKZwDAywLI5lwRNnuOVAKKMsoG6G7nrvdF2tbGrtpAzR6G-o1hE_todZ_J5u60q_-oCUXiosjYNIDqn9ri9lSH3uYKiUpJgfSeW9Ox4Lf7W1s9bqOxjYNbKzfR005Z0rmGZadddpbTfAxBut-2ATrYxy6j0Of4mDf7Y195w</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Gualandi, A.</creator><creator>Avouac, J.-P.</creator><creator>Michel, S.</creator><creator>Faranda, D.</creator><general>American Association for the Advancement of Science (AAAS)</general><general>American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3100-8932</orcidid><orcidid>https://orcid.org/0000-0001-7878-6603</orcidid><orcidid>https://orcid.org/0000-0002-3060-8442</orcidid><orcidid>https://orcid.org/0000-0001-5001-5698</orcidid></search><sort><creationdate>20200701</creationdate><title>The predictable chaos of slow earthquakes</title><author>Gualandi, A. ; Avouac, J.-P. ; Michel, S. ; Faranda, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-8ca6a6febc00ca53c16bfa127f2b9de4fd5f809a3a07bc735f18e000a88a23623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chaotic Dynamics</topic><topic>Dynamical Systems</topic><topic>Earth Sciences</topic><topic>Geophysics</topic><topic>Mathematics</topic><topic>Nonlinear Sciences</topic><topic>SciAdv r-articles</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gualandi, A.</creatorcontrib><creatorcontrib>Avouac, J.-P.</creatorcontrib><creatorcontrib>Michel, S.</creatorcontrib><creatorcontrib>Faranda, D.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gualandi, A.</au><au>Avouac, J.-P.</au><au>Michel, S.</au><au>Faranda, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The predictable chaos of slow earthquakes</atitle><jtitle>Science advances</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>6</volume><issue>27</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Slow earthquakes result from deterministic chaos and show predictability horizon time of the order of days to weeks. Slow earthquakes, like regular earthquakes, result from unstable frictional slip. They produce little slip and can therefore repeat frequently. We assess their predictability using the slip history of the Cascadia subduction between 2007 and 2017, during which slow earthquakes have repeatedly ruptured multiple segments. We characterize the system dynamics using embedding theory and extreme value theory. The analysis reveals a low-dimensional (&lt;5) nonlinear chaotic system rather than a stochastic system. We calculate properties of the underlying attractor like its correlation and instantaneous dimension, instantaneous persistence, and metric entropy. We infer that the system has a predictability horizon of the order of days weeks. For the better resolved segments, the onset of large slip events can be correctly forecasted by high values of the instantaneous dimension. Longer-term deterministic prediction seems intrinsically impossible. Regular earthquakes might similarly be predictable but with a limited predictable horizon of the order of their durations.</abstract><pub>American Association for the Advancement of Science (AAAS)</pub><pmid>32937449</pmid><doi>10.1126/sciadv.aaz5548</doi><orcidid>https://orcid.org/0000-0002-3100-8932</orcidid><orcidid>https://orcid.org/0000-0001-7878-6603</orcidid><orcidid>https://orcid.org/0000-0002-3060-8442</orcidid><orcidid>https://orcid.org/0000-0001-5001-5698</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2020-07, Vol.6 (27)
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7458452
source American Association for the Advancement of Science; PMC (PubMed Central)
subjects Chaotic Dynamics
Dynamical Systems
Earth Sciences
Geophysics
Mathematics
Nonlinear Sciences
SciAdv r-articles
Sciences of the Universe
title The predictable chaos of slow earthquakes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20predictable%20chaos%20of%20slow%20earthquakes&rft.jtitle=Science%20advances&rft.au=Gualandi,%20A.&rft.date=2020-07-01&rft.volume=6&rft.issue=27&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aaz5548&rft_dat=%3Cproquest_pubme%3E2443879607%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-8ca6a6febc00ca53c16bfa127f2b9de4fd5f809a3a07bc735f18e000a88a23623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2443879607&rft_id=info:pmid/32937449&rfr_iscdi=true