Loading…
The predictable chaos of slow earthquakes
Slow earthquakes result from deterministic chaos and show predictability horizon time of the order of days to weeks. Slow earthquakes, like regular earthquakes, result from unstable frictional slip. They produce little slip and can therefore repeat frequently. We assess their predictability using th...
Saved in:
Published in: | Science advances 2020-07, Vol.6 (27) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c401t-8ca6a6febc00ca53c16bfa127f2b9de4fd5f809a3a07bc735f18e000a88a23623 |
---|---|
cites | cdi_FETCH-LOGICAL-c401t-8ca6a6febc00ca53c16bfa127f2b9de4fd5f809a3a07bc735f18e000a88a23623 |
container_end_page | |
container_issue | 27 |
container_start_page | |
container_title | Science advances |
container_volume | 6 |
creator | Gualandi, A. Avouac, J.-P. Michel, S. Faranda, D. |
description | Slow earthquakes result from deterministic chaos and show predictability horizon time of the order of days to weeks.
Slow earthquakes, like regular earthquakes, result from unstable frictional slip. They produce little slip and can therefore repeat frequently. We assess their predictability using the slip history of the Cascadia subduction between 2007 and 2017, during which slow earthquakes have repeatedly ruptured multiple segments. We characterize the system dynamics using embedding theory and extreme value theory. The analysis reveals a low-dimensional ( |
doi_str_mv | 10.1126/sciadv.aaz5548 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7458452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2443879607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-8ca6a6febc00ca53c16bfa127f2b9de4fd5f809a3a07bc735f18e000a88a23623</originalsourceid><addsrcrecordid>eNpdkc1Lw0AQxRdRbKm9es7RHlL3M7u5CKWoFQpe6nmZbHZNNO22u2lF_3pTUkQ9zWPmzW8GHkLXBE8JodltNDWUhynAlxBcnaEhZVKktNPnv_QAjWN8wxgTnmWC5JdowGjOJOf5EE1WlU22wZa1aaFobGIq8DHxLomN_0gshLba7eHdxit04aCJdnyqI_TycL-aL9Ll8-PTfLZMDcekTZWBDDJnC4OxAcEMyQoHhEpHi7y03JXCKZwDAywLI5lwRNnuOVAKKMsoG6G7nrvdF2tbGrtpAzR6G-o1hE_todZ_J5u60q_-oCUXiosjYNIDqn9ri9lSH3uYKiUpJgfSeW9Ox4Lf7W1s9bqOxjYNbKzfR005Z0rmGZadddpbTfAxBut-2ATrYxy6j0Of4mDf7Y195w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443879607</pqid></control><display><type>article</type><title>The predictable chaos of slow earthquakes</title><source>American Association for the Advancement of Science</source><source>PMC (PubMed Central)</source><creator>Gualandi, A. ; Avouac, J.-P. ; Michel, S. ; Faranda, D.</creator><creatorcontrib>Gualandi, A. ; Avouac, J.-P. ; Michel, S. ; Faranda, D.</creatorcontrib><description>Slow earthquakes result from deterministic chaos and show predictability horizon time of the order of days to weeks.
Slow earthquakes, like regular earthquakes, result from unstable frictional slip. They produce little slip and can therefore repeat frequently. We assess their predictability using the slip history of the Cascadia subduction between 2007 and 2017, during which slow earthquakes have repeatedly ruptured multiple segments. We characterize the system dynamics using embedding theory and extreme value theory. The analysis reveals a low-dimensional (<5) nonlinear chaotic system rather than a stochastic system. We calculate properties of the underlying attractor like its correlation and instantaneous dimension, instantaneous persistence, and metric entropy. We infer that the system has a predictability horizon of the order of days weeks. For the better resolved segments, the onset of large slip events can be correctly forecasted by high values of the instantaneous dimension. Longer-term deterministic prediction seems intrinsically impossible. Regular earthquakes might similarly be predictable but with a limited predictable horizon of the order of their durations.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aaz5548</identifier><identifier>PMID: 32937449</identifier><language>eng</language><publisher>American Association for the Advancement of Science (AAAS)</publisher><subject>Chaotic Dynamics ; Dynamical Systems ; Earth Sciences ; Geophysics ; Mathematics ; Nonlinear Sciences ; SciAdv r-articles ; Sciences of the Universe</subject><ispartof>Science advances, 2020-07, Vol.6 (27)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-8ca6a6febc00ca53c16bfa127f2b9de4fd5f809a3a07bc735f18e000a88a23623</citedby><cites>FETCH-LOGICAL-c401t-8ca6a6febc00ca53c16bfa127f2b9de4fd5f809a3a07bc735f18e000a88a23623</cites><orcidid>0000-0002-3100-8932 ; 0000-0001-7878-6603 ; 0000-0002-3060-8442 ; 0000-0001-5001-5698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458452/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458452/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,2870,2871,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02887201$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gualandi, A.</creatorcontrib><creatorcontrib>Avouac, J.-P.</creatorcontrib><creatorcontrib>Michel, S.</creatorcontrib><creatorcontrib>Faranda, D.</creatorcontrib><title>The predictable chaos of slow earthquakes</title><title>Science advances</title><description>Slow earthquakes result from deterministic chaos and show predictability horizon time of the order of days to weeks.
Slow earthquakes, like regular earthquakes, result from unstable frictional slip. They produce little slip and can therefore repeat frequently. We assess their predictability using the slip history of the Cascadia subduction between 2007 and 2017, during which slow earthquakes have repeatedly ruptured multiple segments. We characterize the system dynamics using embedding theory and extreme value theory. The analysis reveals a low-dimensional (<5) nonlinear chaotic system rather than a stochastic system. We calculate properties of the underlying attractor like its correlation and instantaneous dimension, instantaneous persistence, and metric entropy. We infer that the system has a predictability horizon of the order of days weeks. For the better resolved segments, the onset of large slip events can be correctly forecasted by high values of the instantaneous dimension. Longer-term deterministic prediction seems intrinsically impossible. Regular earthquakes might similarly be predictable but with a limited predictable horizon of the order of their durations.</description><subject>Chaotic Dynamics</subject><subject>Dynamical Systems</subject><subject>Earth Sciences</subject><subject>Geophysics</subject><subject>Mathematics</subject><subject>Nonlinear Sciences</subject><subject>SciAdv r-articles</subject><subject>Sciences of the Universe</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1Lw0AQxRdRbKm9es7RHlL3M7u5CKWoFQpe6nmZbHZNNO22u2lF_3pTUkQ9zWPmzW8GHkLXBE8JodltNDWUhynAlxBcnaEhZVKktNPnv_QAjWN8wxgTnmWC5JdowGjOJOf5EE1WlU22wZa1aaFobGIq8DHxLomN_0gshLba7eHdxit04aCJdnyqI_TycL-aL9Ll8-PTfLZMDcekTZWBDDJnC4OxAcEMyQoHhEpHi7y03JXCKZwDAywLI5lwRNnuOVAKKMsoG6G7nrvdF2tbGrtpAzR6G-o1hE_todZ_J5u60q_-oCUXiosjYNIDqn9ri9lSH3uYKiUpJgfSeW9Ox4Lf7W1s9bqOxjYNbKzfR005Z0rmGZadddpbTfAxBut-2ATrYxy6j0Of4mDf7Y195w</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Gualandi, A.</creator><creator>Avouac, J.-P.</creator><creator>Michel, S.</creator><creator>Faranda, D.</creator><general>American Association for the Advancement of Science (AAAS)</general><general>American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3100-8932</orcidid><orcidid>https://orcid.org/0000-0001-7878-6603</orcidid><orcidid>https://orcid.org/0000-0002-3060-8442</orcidid><orcidid>https://orcid.org/0000-0001-5001-5698</orcidid></search><sort><creationdate>20200701</creationdate><title>The predictable chaos of slow earthquakes</title><author>Gualandi, A. ; Avouac, J.-P. ; Michel, S. ; Faranda, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-8ca6a6febc00ca53c16bfa127f2b9de4fd5f809a3a07bc735f18e000a88a23623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chaotic Dynamics</topic><topic>Dynamical Systems</topic><topic>Earth Sciences</topic><topic>Geophysics</topic><topic>Mathematics</topic><topic>Nonlinear Sciences</topic><topic>SciAdv r-articles</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gualandi, A.</creatorcontrib><creatorcontrib>Avouac, J.-P.</creatorcontrib><creatorcontrib>Michel, S.</creatorcontrib><creatorcontrib>Faranda, D.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gualandi, A.</au><au>Avouac, J.-P.</au><au>Michel, S.</au><au>Faranda, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The predictable chaos of slow earthquakes</atitle><jtitle>Science advances</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>6</volume><issue>27</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Slow earthquakes result from deterministic chaos and show predictability horizon time of the order of days to weeks.
Slow earthquakes, like regular earthquakes, result from unstable frictional slip. They produce little slip and can therefore repeat frequently. We assess their predictability using the slip history of the Cascadia subduction between 2007 and 2017, during which slow earthquakes have repeatedly ruptured multiple segments. We characterize the system dynamics using embedding theory and extreme value theory. The analysis reveals a low-dimensional (<5) nonlinear chaotic system rather than a stochastic system. We calculate properties of the underlying attractor like its correlation and instantaneous dimension, instantaneous persistence, and metric entropy. We infer that the system has a predictability horizon of the order of days weeks. For the better resolved segments, the onset of large slip events can be correctly forecasted by high values of the instantaneous dimension. Longer-term deterministic prediction seems intrinsically impossible. Regular earthquakes might similarly be predictable but with a limited predictable horizon of the order of their durations.</abstract><pub>American Association for the Advancement of Science (AAAS)</pub><pmid>32937449</pmid><doi>10.1126/sciadv.aaz5548</doi><orcidid>https://orcid.org/0000-0002-3100-8932</orcidid><orcidid>https://orcid.org/0000-0001-7878-6603</orcidid><orcidid>https://orcid.org/0000-0002-3060-8442</orcidid><orcidid>https://orcid.org/0000-0001-5001-5698</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2020-07, Vol.6 (27) |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7458452 |
source | American Association for the Advancement of Science; PMC (PubMed Central) |
subjects | Chaotic Dynamics Dynamical Systems Earth Sciences Geophysics Mathematics Nonlinear Sciences SciAdv r-articles Sciences of the Universe |
title | The predictable chaos of slow earthquakes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20predictable%20chaos%20of%20slow%20earthquakes&rft.jtitle=Science%20advances&rft.au=Gualandi,%20A.&rft.date=2020-07-01&rft.volume=6&rft.issue=27&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aaz5548&rft_dat=%3Cproquest_pubme%3E2443879607%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-8ca6a6febc00ca53c16bfa127f2b9de4fd5f809a3a07bc735f18e000a88a23623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2443879607&rft_id=info:pmid/32937449&rfr_iscdi=true |