Loading…
Implementation of Artificial Intelligence-Based Clinical Decision Support to Reduce Hospital Readmissions at a Regional Hospital
Abstract Background Hospital readmissions are a key quality metric, which has been tied to reimbursement. One strategy to reduce readmissions is to direct resources to patients at the highest risk of readmission. This strategy necessitates a robust predictive model coupled with effective, patient-c...
Saved in:
Published in: | Applied clinical informatics 2020-08, Vol.11 (4), p.570-577 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Background
Hospital readmissions are a key quality metric, which has been tied to reimbursement. One strategy to reduce readmissions is to direct resources to patients at the highest risk of readmission. This strategy necessitates a robust predictive model coupled with effective, patient-centered interventions.
Objective
The aim of this study was to reduce unplanned hospital readmissions through the use of artificial intelligence-based clinical decision support.
Methods
A commercially vended artificial intelligence tool was implemented at a regional hospital in La Crosse, Wisconsin between November 2018 and April 2019. The tool assessed all patients admitted to general care units for risk of readmission and generated recommendations for interventions intended to decrease readmission risk. Similar hospitals were used as controls. Change in readmission rate was assessed by comparing the 6-month intervention period to the same months of the previous calendar year in exposure and control hospitals.
Results
Among 2,460 hospitalizations assessed using the tool, 611 were designated by the tool as high risk. Sensitivity and specificity for risk assignment were 65% and 89%, respectively. Over 6 months following implementation, readmission rates decreased from 11.4% during the comparison period to 8.1% (
p
|
---|---|
ISSN: | 1869-0327 1869-0327 |
DOI: | 10.1055/s-0040-1715827 |