Loading…

Neuron Activity Dependent Redox Compartmentation Revealed with a Second Generation Red-Shifted Ratiometric Sensor

Oxidative stress is a hallmark of several aging and trauma related neurological disorders, but the precise details of how altered neuronal activity elicits subcellular redox changes have remained difficult to resolve. Current redox sensitive dyes and fluorescent proteins can quantify spatially disti...

Full description

Saved in:
Bibliographic Details
Published in:ACS chemical neuroscience 2020-09, Vol.11 (17), p.2666-2678
Main Authors: Radhakrishnan, Saranya, Norley, Jacob, Wendt, Stefan, LeRoy, Nathan, Hall, Hana, Norcross, Stevie, Doan, Sara, Snaider, Jordan, MacVicar, Brian A, Weake, Vikki M, Huang, Libai, Tantama, Mathew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oxidative stress is a hallmark of several aging and trauma related neurological disorders, but the precise details of how altered neuronal activity elicits subcellular redox changes have remained difficult to resolve. Current redox sensitive dyes and fluorescent proteins can quantify spatially distinct changes in reactive oxygen species levels, but multicolor probes are needed to accurately analyze compartment-specific redox dynamics in single cells that can be masked by population averaging. We previously engineered genetically encoded red-shifted redox-sensitive fluorescent protein sensors using a Förster resonance energy transfer relay strategy. Here, we developed a second-generation excitation ratiometric sensor called rogRFP2 with improved red emission for quantitative live-cell imaging. Using this sensor to measure activity-dependent redox changes in individual cultured neurons, we observed an anticorrelation in which mitochondrial oxidation was accompanied by a concurrent reduction in the cytosol. This behavior was dependent on the activity of Complex I of the mitochondrial electron transport chain and could be modulated by the presence of cocultured astrocytes. We also demonstrated that the red fluorescent rogRFP2 facilitates ratiometric one- and two-photon redox imaging in rat brain slices and Drosophila retinas. Overall, the proof-of-concept studies reported here demonstrate that this new rogRFP2 redox sensor can be a powerful tool for understanding redox biology both in vitro and in vivo across model organisms.
ISSN:1948-7193
1948-7193
DOI:10.1021/acschemneuro.0c00342