Loading…

Efficient hybrid 3D system calibration for magnetic particle imaging systems using a dedicated device

Image reconstruction in magnetic particle imaging is often performed using a system matrix based approach. The acquisition of a system matrix is a time-consuming calibration which may take several weeks and thus, is not feasible for a clinical device. Due to hardware characteristics of the receive c...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-10, Vol.10 (1), p.18432-18432, Article 18432
Main Authors: von Gladiss, Anselm, Graeser, Matthias, Behrends, André, Chen, Xin, Buzug, Thorsten M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Image reconstruction in magnetic particle imaging is often performed using a system matrix based approach. The acquisition of a system matrix is a time-consuming calibration which may take several weeks and thus, is not feasible for a clinical device. Due to hardware characteristics of the receive chain, a system matrix may not even be used in similar devices but has to be acquired for each imager. In this work, a dedicated device is used for measuring a hybrid system matrix. It is shown that the measurement time of a 3D system matrix is reduced by 96%. The transfer function of the receive chains is measured, which allows the use of the same system matrix in multiple devices. Equivalent image reconstruction results are reached using the hybrid system matrix. Furthermore, the inhomogeneous sensitivity profile of receive coils is successfully applied to a hybrid system matrix. It is shown that each aspect of signal acquisition in magnetic particle imaging can be taken into account using hybrid system matrices. It is favourable to use a hybrid system matrix for image reconstruction in terms of measurement time, signal-to-noise ratio and discretisation.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-75122-5