Loading…
Human Cancers Express TRAILshort, a Dominant Negative TRAIL Splice Variant, Which Impairs Immune Effector Cell Killing of Tumor Cells
TNF-related apoptosis inducing ligand (TRAIL) expression by immune cells contributes to antitumor immunity. A naturally occurring splice variant of TRAIL, called TRAILshort, antagonizes TRAIL-dependent cell killing. It is unknown whether tumor cells express TRAILshort and if it impacts antitumor imm...
Saved in:
Published in: | Clinical cancer research 2020-11, Vol.26 (21), p.5759-5771 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | TNF-related apoptosis inducing ligand (TRAIL) expression by immune cells contributes to antitumor immunity. A naturally occurring splice variant of TRAIL, called TRAILshort, antagonizes TRAIL-dependent cell killing. It is unknown whether tumor cells express TRAILshort and if it impacts antitumor immunity.
We used an unbiased informatics approach to identify TRAILshort expression in primary human cancers, and validated those results with IHC and ISH. TRAILshort-specific mAbs were used to determine the effect of TRAILshort on tumor cell sensitivity to TRAIL, and to immune effector cell dependent killing of autologous primary tumors.
As many as 40% of primary human tumors express TRAILshort by both RNA sequencing and IHC analysis. By ISH, TRAILshort expression is present in tumor cells and not bystander cells. TRAILshort inhibition enhances cancer cell lines sensitivity to TRAIL-dependent killing both
and in immunodeficient xenograft mouse models. Immune effector cells isolated from patients with B-cell malignancies killed more autologous tumor cells in the presence compared with the absence of TRAILshort antibody (
< 0.05).
These results identify TRAILshort in primary human malignancies, and suggest that TRAILshort blockade can augment the effector function of autologous immune effector cells.
. |
---|---|
ISSN: | 1078-0432 1557-3265 |
DOI: | 10.1158/1078-0432.CCR-20-0251 |