Loading…

In vitro activity of rifabutin against 293 contemporary carbapenem-resistant Acinetobacter baumannii clinical isolates and characterization of rifabutin mode of action and resistance mechanisms

Abstract Background Rifabutin, an oral drug approved to treat Mycobacterium avium infections, demonstrated potent activity against Acinetobacter baumannii in nutrient-limited medium enabled by rifabutin cellular uptake through the siderophore receptor FhuE. Objectives To determine rifabutin in vitro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of antimicrobial chemotherapy 2020-12, Vol.75 (12), p.3552-3562
Main Authors: Trebosc, Vincent, Schellhorn, Birgit, Schill, Julian, Lucchini, Valentina, Bühler, Jacqueline, Bourotte, Marilyne, Butcher, Jonathan J, Gitzinger, Marc, Lociuro, Sergio, Kemmer, Christian, Dale, Glenn E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Rifabutin, an oral drug approved to treat Mycobacterium avium infections, demonstrated potent activity against Acinetobacter baumannii in nutrient-limited medium enabled by rifabutin cellular uptake through the siderophore receptor FhuE. Objectives To determine rifabutin in vitro activity and resistance mechanisms in a large panel of A. baumannii isolates. Methods Two hundred and ninety-three carbapenem-resistant A. baumannii clinical isolates collected from Europe, the USA and Asia during 2017–19 were used for MIC determination. Sequencing/genotyping of fhuE, rpoB and arr-2 genes in isolates with elevated rifabutin MIC combined with genetic engineering and gene expression quantification was used to characterize rifabutin’s mode of action and resistance mechanisms. Results Rifabutin showed excellent activity on the strain panel, with an MIC50/90 of 0.008/1 mg/L, and was superior to all other antibiotics tested, including colistin, tigecycline and cefiderocol (MIC90 of 8 mg/L). Rifabutin remained active on resistant subpopulations, including strains resistant to the siderophore–drug conjugate cefiderocol (MIC90 of 2 mg/L, n = 23). At least two independent resistance mechanisms were required to abolish rifabutin activity, which is in line with the dose-dependent mutational resistance frequency reaching 10−9 at rifabutin concentrations at or above 2 mg/L. Conclusions This study demonstrated the potent activity of rifabutin against carbapenem-resistant A. baumannii. We propose that FhuE-mediated active uptake of rifabutin enables activity against rifampicin-resistant isolates. To achieve clinically meaningful strain coverage and to avoid rapid resistance development, rifabutin concentrations ≥2 mg/L are required, something rifabutin oral formulations cannot deliver.
ISSN:0305-7453
1460-2091
DOI:10.1093/jac/dkaa370