Loading…

Confinement-induced stabilization of the Rayleigh-Taylor instability and transition to the unconfined limit

Sufficient confinement can completely suppress the Rayleigh-Taylor instability between two density-inverted miscible fluids. The prevention of hydrodynamic instabilities can lead to important insights for understanding the instabilities’ underlying dynamics. The Rayleigh-Taylor instability that aris...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2020-11, Vol.6 (47)
Main Authors: Alqatari, Samar, Videbæk, Thomas E., Nagel, Sidney R., Hosoi, A. E., Bischofberger, Irmgard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sufficient confinement can completely suppress the Rayleigh-Taylor instability between two density-inverted miscible fluids. The prevention of hydrodynamic instabilities can lead to important insights for understanding the instabilities’ underlying dynamics. The Rayleigh-Taylor instability that arises when a dense fluid sinks into and displaces a lighter one is particularly difficult to arrest. By preparing a density inversion between two miscible fluids inside the thin gap separating two flat plates, we create a clean initial stationary interface. Under these conditions, we find that the instability is suppressed below a critical plate spacing. With increasing spacing, the system transitions from the limit of stability where mass diffusion dominates over buoyant forces, through a regime where the gap sets the wavelength of the instability, to the unconfined regime governed by the competition between buoyancy and momentum diffusion. Our study, including experiment, simulation, and linear stability analysis, characterizes all three regimes of confinement and opens new routes for controlling mixing processes.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.abd6605