Loading…

Sensitivity differences among five species of aquatic fungi and fungus-like organisms for seven fungicides with various modes of action

Five species of aquatic fungi and fungus-like organisms were used for toxicity assays with seven fungicides to determine the differences in species sensitivity. A microplate toxicity assay with adenosine triphosphate luminescence detection was used as an efficient and economical high-throughput assa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Pesticide Science 2020/11/20, Vol.45(4), pp.223-229
Main Author: Nagai, Takashi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Five species of aquatic fungi and fungus-like organisms were used for toxicity assays with seven fungicides to determine the differences in species sensitivity. A microplate toxicity assay with adenosine triphosphate luminescence detection was used as an efficient and economical high-throughput assay. The obtained toxicity data were standardized based on the species sensitivity distribution method. Species sensitivity differed among the fungicides: Rhizophydium brooksianum was most sensitive to hydroxyisoxazole, isoprothiolane, and ferimzone; Chytriomyces hyalinus was most sensitive to tricyclazole; Sporobolomyces roseus was most sensitive to ipconazole; Aphanomyces stellatus was most sensitive to orysastrobin and kasugamycin. Tetracladium setigerum was not the most sensitive species to any of the tested fungicides. The ranges of EC50s to fungal species were lower than to other aquatic organisms (primary producers, invertebrates, and vertebrates) for hydroxyisoxazole, kasugamycin, isoprothiolane, ipconazole, and ferimzone. These results suggest the usefulness of a battery of fungal species to assess the ecological effects of fungicides.
ISSN:1348-589X
1349-0923
DOI:10.1584/jpestics.D20-035