Loading…
Modular cell-free expression plasmids to accelerate biological design in cells
Industrial biotechnology aims to produce high-value products from renewable resources. This can be challenging because model microorganisms-organisms that are easy to use like -often lack the machinery required to utilize desired feedstocks like lignocellulosic biomass or syngas. Non-model organisms...
Saved in:
Published in: | Synthetic biology (Oxford University Press) 2020-01, Vol.5 (1), p.ysaa019-ysaa019 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Industrial biotechnology aims to produce high-value products from renewable resources. This can be challenging because model microorganisms-organisms that are easy to use like
-often lack the machinery required to utilize desired feedstocks like lignocellulosic biomass or syngas. Non-model organisms, such as
, are industrially proven and have desirable metabolic features but have several hurdles to mainstream use. Namely, these species grow more slowly than conventional laboratory microbes, and genetic tools for engineering them are far less prevalent. To address these hurdles for accelerating cellular design, cell-free synthetic biology has matured as an approach for characterizing non-model organisms and rapidly testing metabolic pathways
. Unfortunately, cell-free systems can require specialized DNA architectures with minimal regulation that are not compatible with cellular expression. In this work, we develop a modular vector system that allows for T7 expression of desired enzymes for cell-free expression and direct Golden Gate assembly into
expression vectors. Utilizing the Joint Genome Institute's DNA Synthesis Community Science Program, we designed and synthesized these plasmids and genes required for our projects allowing us to shuttle DNA easily between our
and
experiments. We next validated that these vectors were sufficient for cell-free expression of functional enzymes, performing on par with the previous state-of-the-art. Lastly, we demonstrated automated six-part DNA assemblies for
expression with efficiencies ranging from 68% to 90%. We anticipate this system of plasmids will enable a framework for facile testing of biosynthetic pathways
and
by shortening development cycles. |
---|---|
ISSN: | 2397-7000 2397-7000 |
DOI: | 10.1093/synbio/ysaa019 |