Loading…

Natural language processing with machine learning to predict outcomes after ovarian cancer surgery

To determine if natural language processing (NLP) with machine learning of unstructured full text documents (a preoperative CT scan) improves the ability to predict postoperative complication and hospital readmission among women with ovarian cancer undergoing surgery when compared with discrete data...

Full description

Saved in:
Bibliographic Details
Published in:Gynecologic oncology 2021-01, Vol.160 (1), p.182-186
Main Authors: Barber, Emma L., Garg, Ravi, Persenaire, Christianne, Simon, Melissa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To determine if natural language processing (NLP) with machine learning of unstructured full text documents (a preoperative CT scan) improves the ability to predict postoperative complication and hospital readmission among women with ovarian cancer undergoing surgery when compared with discrete data predictors alone. Medical records from two institutions were queried to identify women with ovarian cancer and available preoperative CT scan reports who underwent debulking surgery. Machine learning methods using both discrete data predictors (age, comorbidities, preoperative laboratory values) and natural language processing of full text reports (preoperative CT scans) were used to predict postoperative complication and hospital readmission within 30 days of surgery. Discrimination was measured using the area under the receiver operating characteristic curve (AUC). We identified 291 women who underwent debulking surgery for ovarian cancer. Mean age was 59, mean preoperative CA125 value was 610 U/ml and albumin was 3.9 g/dl. There were 25 patients (8.6%) who were readmitted and 45 patients (15.5%) who developed postoperative complications within 30 days. Using discrete features alone, we were able to predict postoperative readmission with an AUC of 0.56 (0.54–0.58, 95% CI); this improved to 0.70 (0.68–0.73, 95% CI) (p 
ISSN:0090-8258
1095-6859
DOI:10.1016/j.ygyno.2020.10.004