Loading…

Modeling physician variability to prioritize relevant medical record information

Objective Patient information can be retrieved more efficiently in electronic medical record (EMR) systems by using machine learning models that predict which information a physician will seek in a clinical context. However, information-seeking behavior varies across EMR users. To explicitly account...

Full description

Saved in:
Bibliographic Details
Published in:JAMIA open 2020-12, Vol.3 (4), p.602-610
Main Authors: Tajgardoon, Mohammadamin, Cooper, Gregory F, King, Andrew J, Clermont, Gilles, Hochheiser, Harry, Hauskrecht, Milos, Sittig, Dean F, Visweswaran, Shyam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective Patient information can be retrieved more efficiently in electronic medical record (EMR) systems by using machine learning models that predict which information a physician will seek in a clinical context. However, information-seeking behavior varies across EMR users. To explicitly account for this variability, we derived hierarchical models and compared their performance to nonhierarchical models in identifying relevant patient information in intensive care unit (ICU) cases. Materials and methods Critical care physicians reviewed ICU patient cases and selected data items relevant for presenting at morning rounds. Using patient EMR data as predictors, we derived hierarchical logistic regression (HLR) and standard logistic regression (LR) models to predict their relevance. Results In 73 pairs of HLR and LR models, the HLR models achieved an area under the receiver operating characteristic curve of 0.81, 95% confidence interval (CI) [0.80–0.82], which was statistically significantly higher than that of LR models (0.75, 95% CI [0.74–0.76]). Further, the HLR models achieved statistically significantly lower expected calibration error (0.07, 95% CI [0.06–0.08]) than LR models (0.16, 95% CI [0.14–0.17]). Discussion The physician reviewers demonstrated variability in selecting relevant data. Our results show that HLR models perform significantly better than LR models with respect to both discrimination and calibration. This is likely due to explicitly modeling physician-related variability. Conclusion Hierarchical models can yield better performance when there is physician-related variability as in the case of identifying relevant information in the EMR.
ISSN:2574-2531
2574-2531
DOI:10.1093/jamiaopen/ooaa058