Loading…
Simultaneous determination of paraquat and diquat in human plasma by HPLC‐DAD: Its application in acute poisoning patients induced by these two herbicides
Background Paraquat and diquat are widely used in agricultural production in many countries, which are very toxic to human beings. Paraquat can be detected in some diquat solution sold in the market. The blood concentration of paraquat or diquat is an important indicator for clinical diagnosis of pa...
Saved in:
Published in: | Journal of clinical laboratory analysis 2021-03, Vol.35 (3), p.e23669-n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Paraquat and diquat are widely used in agricultural production in many countries, which are very toxic to human beings. Paraquat can be detected in some diquat solution sold in the market. The blood concentration of paraquat or diquat is an important indicator for clinical diagnosis of paraquat or diquat poisoning. So, it is very meaningful to develop a method for simultaneous determination of paraquat and diquat in human plasma.
Objective
To develop and validate a HPLC‐DAD method for simultaneous determination of paraquat and diquat in human plasma and to apply it in the acute poisoning patients by these two herbicides.
Methods
Paraquat and diquat were simultaneously determined by HPLC‐DAD. The plasma was treated using Waters OASIS® Column and then separated on a Thermo Hypersil GOLD (250 × 4.6 mm, 5 μm) Column with the mobile phase consisted of 75 mmol/L sodium heptane sulfonate (containing 0.1 mol/L phosphoric acid, pH 3.0) and acetonitrile (87:13, v:v) at a flow rate of 1.0 mL/min. The full‐wavelength scanning was 200‐400 nm, and the detection wavelength of paraquat and diquat was 257nm and 310nm, respectively. 120 and 30 plasma samples from patients with paraquat and diquat poisoning were collected and analyzed by the established method.
Results
The standard curve for paraquat and diquat ranged from 0.05 to 20 μg/mL, and the precision of LLOQ for paraquat was 16.49%, which was required to be less than 20%. The precision of other concentrations was less than 14.14%. The recovery of paraquat and diquat was 95.38%‐103.97% and 94.79%‐98.40%, respectively. The results showed that paraquat and diquat were stable under various storage conditions. 120 plasma samples of paraquat poisoning patients and 30 plasma samples of diquat poisoning patients were determined by the established method. The blood concentration of paraquat ranged from 0.10 to 20.62 μg/mL, with an average of 3.61 μg/mL, while for diquat, the concentration ranged from 0 to 26.59 μg/mL, with an average of 2.00 μg/mL. Among the diquat suspected poisoning samples, 5 samples were detected not only diquat but also paraquat, and 2 samples were detected only paraquat, no diquat.
Conclusion
The HPLC‐DAD method established in this study was high throughput, high sensitivity, simple operation, and wide linear ranges. It can be used for the screening analysis and quantitative detection of paraquat and diquat in acute poisoning patients, which can provide basis for the treatment and prognosis o |
---|---|
ISSN: | 0887-8013 1098-2825 |
DOI: | 10.1002/jcla.23669 |