Loading…

Deep convolutional neural networks for multiplanar lung nodule detection: Improvement in small nodule identification

Purpose Early detection of lung cancer is of importance since it can increase patients’ chances of survival. To detect nodules accurately during screening, radiologists would commonly take the axial, coronal, and sagittal planes into account, rather than solely the axial plane in clinical evaluation...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) 2021-02, Vol.48 (2), p.733-744
Main Authors: Zheng, Sunyi, Cornelissen, Ludo J., Cui, Xiaonan, Jing, Xueping, Veldhuis, Raymond N. J., Oudkerk, Matthijs, Ooijen, Peter M. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose Early detection of lung cancer is of importance since it can increase patients’ chances of survival. To detect nodules accurately during screening, radiologists would commonly take the axial, coronal, and sagittal planes into account, rather than solely the axial plane in clinical evaluation. Inspired by clinical work, the paper aims to develop an accurate deep learning framework for nodule detection by a combination of multiple planes. Methods The nodule detection system is designed in two stages, multiplanar nodule candidate detection, multiscale false positive (FP) reduction. At the first stage, a deeply supervised encoder–decoder network is trained by axial, coronal, and sagittal slices for the candidate detection task. All possible nodule candidates from the three different planes are merged. To further refine results, a three‐dimensional multiscale dense convolutional neural network that extracts multiscale contextual information is applied to remove non‐nodules. In the public LIDC‐IDRI dataset, 888 computed tomography scans with 1186 nodules accepted by at least three of four radiologists are selected to train and evaluate our proposed system via a tenfold cross‐validation scheme. The free‐response receiver operating characteristic curve is used for performance assessment. Results The proposed system achieves a sensitivity of 94.2% with 1.0 FP/scan and a sensitivity of 96.0% with 2.0 FPs/scan. Although it is difficult to detect small nodules (i.e.,
ISSN:0094-2405
2473-4209
DOI:10.1002/mp.14648