Loading…

Large Scale Molecular Studies of Pituitary Neuroendocrine Tumors: Novel Markers, Mechanisms and Translational Perspectives

Pituitary neuroendocrine tumors (PitNETs) are non-metastatic neoplasms of the pituitary, which overproduce hormones leading to systemic disorders, or tumor mass effects causing headaches, vertigo or visual impairment. Recently, PitNETs have been investigated in large scale (exome and genome) molecul...

Full description

Saved in:
Bibliographic Details
Published in:Cancers 2021-03, Vol.13 (6), p.1395
Main Authors: Peculis, Raitis, Niedra, Helvijs, Rovite, Vita
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pituitary neuroendocrine tumors (PitNETs) are non-metastatic neoplasms of the pituitary, which overproduce hormones leading to systemic disorders, or tumor mass effects causing headaches, vertigo or visual impairment. Recently, PitNETs have been investigated in large scale (exome and genome) molecular analyses (transcriptome microarrays and sequencing), to uncover novel markers. We performed a literature analysis on these studies to summarize the research data and extrapolate overlapping gene candidates, biomarkers, and molecular mechanisms. We observed a tendency in samples with driver mutations ( , ) to have a smaller overall mutational rate, suggesting driver-promoted tumorigenesis, potentially changing transcriptome profiles in tumors. However, direct links from drivers to signaling pathways altered in PitNETs (Notch, Wnt, TGF-β, and cell cycle regulators) require further investigation. Modern technologies have also identified circulating nucleic acids, and pinpointed these as novel PitNET markers, i.e., miR-143-3p, miR-16-5p, miR-145-5p, and let-7g-5p, therefore these molecules must be investigated in the future translational studies. Overall, large-scale molecular studies have provided key insight into the molecular mechanisms behind PitNET pathogenesis, highlighting previously reported molecular markers, bringing new candidates into the research field, and reapplying traditional perspectives to newly discovered molecular mechanisms.
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers13061395