Loading…
Confidence intervals for policy evaluation in adaptive experiments
Adaptive experimental designs can dramatically improve efficiency in randomized trials. But with adaptively collected data, common estimators based on sample means and inverse propensity-weighted means can be biased or heavy-tailed. This poses statistical challenges, in particular when the experimen...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2021-04, Vol.118 (15), p.1-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Adaptive experimental designs can dramatically improve efficiency in randomized trials. But with adaptively collected data, common estimators based on sample means and inverse propensity-weighted means can be biased or heavy-tailed. This poses statistical challenges, in particular when the experimenter would like to test hypotheses about parameters that were not targeted by the data-collection mechanism. In this paper, we present a class of test statistics that can handle these challenges. Our approach is to adaptively reweight the terms of an augmented inverse propensity-weighting estimator to control the contribution of each term to the estimator’s variance. This scheme reduces overall variance and yields an asymptotically normal test statistic. We validate the accuracy of the resulting estimates and their CIs in numerical experiments and show that our methods compare favorably to existing alternatives in terms of mean squared error, coverage, and CI size. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.2014602118 |