Loading…
Critical Assessment of Important Regions in the Subunit Association and Catalytic Action of the Severe Acute Respiratory Syndrome Coronavirus Main Protease
The severe acute respiratory syndrome (SARS) coronavirus (CoV) main protease represents an attractive target for the development of novel anti-SARS agents. The tertiary structure of the protease consists of two distinct folds. One is the N-terminal chymotrypsin-like fold that consists of two structu...
Saved in:
Published in: | The Journal of biological chemistry 2005-06, Vol.280 (24), p.22741-22748 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The severe acute respiratory syndrome (SARS) coronavirus (CoV) main protease represents an attractive target for the development
of novel anti-SARS agents. The tertiary structure of the protease consists of two distinct folds. One is the N-terminal chymotrypsin-like
fold that consists of two structural domains and constitutes the catalytic machinery; the other is the C-terminal helical
domain, which has an unclear function and is not found in other RNA virus main proteases. To understand the functional roles
of the two structural parts of the SARS-CoV main protease, we generated the full-length of this enzyme as well as several
terminally truncated forms, different from each other only by the number of amino acid residues at the C- or N-terminal regions.
The quaternary structure and K d value of the protease were analyzed by analytical ultracentrifugation. The results showed that the N-terminal 1â3 amino acid-truncated
protease maintains 76% of enzyme activity and that the major form is a dimer, as in the wild type. However, the amino acids
1â4-truncated protease showed the major form to be a monomer and had little enzyme activity. As a result, the fourth amino
acid seemed to have a powerful effect on the quaternary structure and activity of this protease. The last C-terminal helically
truncated protease also exhibited a greater tendency to form monomer and showed little activity. We concluded that both the
C- and the N-terminal regions influence the dimerization and enzyme activity of the SARS-CoV main protease. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M502556200 |