Loading…
Freestream velocity-profile measurement in a large-scale, high-enthalpy reflected-shock tunnel
We apply Krypton Tagging Velocimetry (KTV) to measure velocity profiles in the freestream of a large, national-scale high-enthalpy facility, the T5 Reflected-Shock Tunnel at Caltech. The KTV scheme utilizes two-photon excitation at 216.67 nm with a pulsed dye laser, followed by re-excitation at 769....
Saved in:
Published in: | Experiments in fluids 2021, Vol.62 (5), p.118-118, Article 118 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We apply Krypton Tagging Velocimetry (KTV) to measure velocity profiles in the freestream of a large, national-scale high-enthalpy facility, the T5 Reflected-Shock Tunnel at Caltech. The KTV scheme utilizes two-photon excitation at 216.67 nm with a pulsed dye laser, followed by re-excitation at 769.45 nm with a continuous laser diode. Results from a nine-shot experimental campaign are presented where N
2
and air gas mixtures are doped with krypton, denoted as 99% N
2
/1% Kr, and 75% N
2
/20% O
2
/5% Kr, respectively. Flow conditions were varied through much of the T5 parameter space (reservoir enthalpy
h
R
≈
5
-
16
MJ/kg). We compare our experimental freestream velocity-profile measurements to reacting, Navier–Stokes nozzle calculations with success, to within the uncertainty of the experiment. Then, we discuss some of the limitations of the present measurement technique, including quenching effects and flow luminosity; and, we present an uncertainty estimate in the freestream velocity computations that arise from the experimentally derived inputs to the code.
Graphic Abstract |
---|---|
ISSN: | 0723-4864 1432-1114 |
DOI: | 10.1007/s00348-021-03207-6 |