Loading…

Large Area Patterning of Nanoparticles and Nanostructures: Current Status and Future Prospects

Nanoparticles possess exceptional optical, magnetic, electrical, and chemical properties. Several applications, ranging from surfaces for optical displays and electronic devices, to energy conversion, require large-area patterns of nanoparticles. Often, it is crucial to maintain a defined arrangemen...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2021-04, Vol.15 (4), p.5861-5875
Main Authors: Barad, Hannah-Noa, Kwon, Hyunah, Alarcón-Correa, Mariana, Fischer, Peer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a495t-77a1b165ac9949be802725e938e69b01f90470fdd01a41aa67c41370709c37883
cites cdi_FETCH-LOGICAL-a495t-77a1b165ac9949be802725e938e69b01f90470fdd01a41aa67c41370709c37883
container_end_page 5875
container_issue 4
container_start_page 5861
container_title ACS nano
container_volume 15
creator Barad, Hannah-Noa
Kwon, Hyunah
Alarcón-Correa, Mariana
Fischer, Peer
description Nanoparticles possess exceptional optical, magnetic, electrical, and chemical properties. Several applications, ranging from surfaces for optical displays and electronic devices, to energy conversion, require large-area patterns of nanoparticles. Often, it is crucial to maintain a defined arrangement and spacing between nanoparticles to obtain a consistent and uniform surface response. In the majority of the established patterning methods, the pattern is written and formed, which is slow and not scalable. Some parallel techniques, forming all points of the pattern simultaneously, have therefore emerged. These methods can be used to quickly assemble nanoparticles and nanostructures on large-area substrates into well-ordered patterns. Here, we review these parallel methods, the materials that have been processed by them, and the types of particles that can be used with each method. We also emphasize the maximal substrate areas that each method can pattern and the distances between particles. Finally, we point out the advantages and disadvantages of each method, as well as the challenges that still need to be addressed to enable facile, on-demand large-area nanopatterning.
doi_str_mv 10.1021/acsnano.0c09999
format article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8155328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d008446197</sourcerecordid><originalsourceid>FETCH-LOGICAL-a495t-77a1b165ac9949be802725e938e69b01f90470fdd01a41aa67c41370709c37883</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMobk7P3qR36ZY0bZN4EMZwKgwdqODJ8Jqms2NLR5IK_vdmdg49-C555H3f7z0-hM4JHhKckBEoZ8A0Q6ywCHWA-kTQPMY8fz3c9xnpoRPnlhhnjLP8GPUo5RSzJO-jtxnYhY7GVkM0B--1NbVZRE0VPQTuBqyv1Uq7CEz5_eO8bZVvrXZX0aS1VhsfPXnwbSeZtttZNLeN22jl3Sk6qmDl9NnuHaCX6c3z5C6ePd7eT8azGFKR-ZgxIAXJM1BCpKLQHCcsybSgXOeiwKQSOGW4KktMICUAOVMpoQwzLBRlnNMBuu64m7ZY61KFsyys5MbWa7CfsoFa_p2Y-l0umg_JSZbRZAsYdQAVTndWV3svwXIbtdxFLXdRB8fF75V7_U-2QXDZCYJTLpvWmpDAv7gvlguMOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large Area Patterning of Nanoparticles and Nanostructures: Current Status and Future Prospects</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Barad, Hannah-Noa ; Kwon, Hyunah ; Alarcón-Correa, Mariana ; Fischer, Peer</creator><creatorcontrib>Barad, Hannah-Noa ; Kwon, Hyunah ; Alarcón-Correa, Mariana ; Fischer, Peer</creatorcontrib><description>Nanoparticles possess exceptional optical, magnetic, electrical, and chemical properties. Several applications, ranging from surfaces for optical displays and electronic devices, to energy conversion, require large-area patterns of nanoparticles. Often, it is crucial to maintain a defined arrangement and spacing between nanoparticles to obtain a consistent and uniform surface response. In the majority of the established patterning methods, the pattern is written and formed, which is slow and not scalable. Some parallel techniques, forming all points of the pattern simultaneously, have therefore emerged. These methods can be used to quickly assemble nanoparticles and nanostructures on large-area substrates into well-ordered patterns. Here, we review these parallel methods, the materials that have been processed by them, and the types of particles that can be used with each method. We also emphasize the maximal substrate areas that each method can pattern and the distances between particles. Finally, we point out the advantages and disadvantages of each method, as well as the challenges that still need to be addressed to enable facile, on-demand large-area nanopatterning.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c09999</identifier><identifier>PMID: 33830726</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Review</subject><ispartof>ACS nano, 2021-04, Vol.15 (4), p.5861-5875</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a495t-77a1b165ac9949be802725e938e69b01f90470fdd01a41aa67c41370709c37883</citedby><cites>FETCH-LOGICAL-a495t-77a1b165ac9949be802725e938e69b01f90470fdd01a41aa67c41370709c37883</cites><orcidid>0000-0002-7165-1906 ; 0000-0002-5300-1002 ; 0000-0002-8600-5958 ; 0000-0003-0764-6421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33830726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barad, Hannah-Noa</creatorcontrib><creatorcontrib>Kwon, Hyunah</creatorcontrib><creatorcontrib>Alarcón-Correa, Mariana</creatorcontrib><creatorcontrib>Fischer, Peer</creatorcontrib><title>Large Area Patterning of Nanoparticles and Nanostructures: Current Status and Future Prospects</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Nanoparticles possess exceptional optical, magnetic, electrical, and chemical properties. Several applications, ranging from surfaces for optical displays and electronic devices, to energy conversion, require large-area patterns of nanoparticles. Often, it is crucial to maintain a defined arrangement and spacing between nanoparticles to obtain a consistent and uniform surface response. In the majority of the established patterning methods, the pattern is written and formed, which is slow and not scalable. Some parallel techniques, forming all points of the pattern simultaneously, have therefore emerged. These methods can be used to quickly assemble nanoparticles and nanostructures on large-area substrates into well-ordered patterns. Here, we review these parallel methods, the materials that have been processed by them, and the types of particles that can be used with each method. We also emphasize the maximal substrate areas that each method can pattern and the distances between particles. Finally, we point out the advantages and disadvantages of each method, as well as the challenges that still need to be addressed to enable facile, on-demand large-area nanopatterning.</description><subject>Review</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMobk7P3qR36ZY0bZN4EMZwKgwdqODJ8Jqms2NLR5IK_vdmdg49-C555H3f7z0-hM4JHhKckBEoZ8A0Q6ywCHWA-kTQPMY8fz3c9xnpoRPnlhhnjLP8GPUo5RSzJO-jtxnYhY7GVkM0B--1NbVZRE0VPQTuBqyv1Uq7CEz5_eO8bZVvrXZX0aS1VhsfPXnwbSeZtttZNLeN22jl3Sk6qmDl9NnuHaCX6c3z5C6ePd7eT8azGFKR-ZgxIAXJM1BCpKLQHCcsybSgXOeiwKQSOGW4KktMICUAOVMpoQwzLBRlnNMBuu64m7ZY61KFsyys5MbWa7CfsoFa_p2Y-l0umg_JSZbRZAsYdQAVTndWV3svwXIbtdxFLXdRB8fF75V7_U-2QXDZCYJTLpvWmpDAv7gvlguMOw</recordid><startdate>20210427</startdate><enddate>20210427</enddate><creator>Barad, Hannah-Noa</creator><creator>Kwon, Hyunah</creator><creator>Alarcón-Correa, Mariana</creator><creator>Fischer, Peer</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7165-1906</orcidid><orcidid>https://orcid.org/0000-0002-5300-1002</orcidid><orcidid>https://orcid.org/0000-0002-8600-5958</orcidid><orcidid>https://orcid.org/0000-0003-0764-6421</orcidid></search><sort><creationdate>20210427</creationdate><title>Large Area Patterning of Nanoparticles and Nanostructures: Current Status and Future Prospects</title><author>Barad, Hannah-Noa ; Kwon, Hyunah ; Alarcón-Correa, Mariana ; Fischer, Peer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a495t-77a1b165ac9949be802725e938e69b01f90470fdd01a41aa67c41370709c37883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barad, Hannah-Noa</creatorcontrib><creatorcontrib>Kwon, Hyunah</creatorcontrib><creatorcontrib>Alarcón-Correa, Mariana</creatorcontrib><creatorcontrib>Fischer, Peer</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barad, Hannah-Noa</au><au>Kwon, Hyunah</au><au>Alarcón-Correa, Mariana</au><au>Fischer, Peer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Area Patterning of Nanoparticles and Nanostructures: Current Status and Future Prospects</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-04-27</date><risdate>2021</risdate><volume>15</volume><issue>4</issue><spage>5861</spage><epage>5875</epage><pages>5861-5875</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Nanoparticles possess exceptional optical, magnetic, electrical, and chemical properties. Several applications, ranging from surfaces for optical displays and electronic devices, to energy conversion, require large-area patterns of nanoparticles. Often, it is crucial to maintain a defined arrangement and spacing between nanoparticles to obtain a consistent and uniform surface response. In the majority of the established patterning methods, the pattern is written and formed, which is slow and not scalable. Some parallel techniques, forming all points of the pattern simultaneously, have therefore emerged. These methods can be used to quickly assemble nanoparticles and nanostructures on large-area substrates into well-ordered patterns. Here, we review these parallel methods, the materials that have been processed by them, and the types of particles that can be used with each method. We also emphasize the maximal substrate areas that each method can pattern and the distances between particles. Finally, we point out the advantages and disadvantages of each method, as well as the challenges that still need to be addressed to enable facile, on-demand large-area nanopatterning.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33830726</pmid><doi>10.1021/acsnano.0c09999</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7165-1906</orcidid><orcidid>https://orcid.org/0000-0002-5300-1002</orcidid><orcidid>https://orcid.org/0000-0002-8600-5958</orcidid><orcidid>https://orcid.org/0000-0003-0764-6421</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2021-04, Vol.15 (4), p.5861-5875
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8155328
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Review
title Large Area Patterning of Nanoparticles and Nanostructures: Current Status and Future Prospects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A11%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Area%20Patterning%20of%20Nanoparticles%20and%20Nanostructures:%20Current%20Status%20and%20Future%20Prospects&rft.jtitle=ACS%20nano&rft.au=Barad,%20Hannah-Noa&rft.date=2021-04-27&rft.volume=15&rft.issue=4&rft.spage=5861&rft.epage=5875&rft.pages=5861-5875&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c09999&rft_dat=%3Cacs_pubme%3Ed008446197%3C/acs_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a495t-77a1b165ac9949be802725e938e69b01f90470fdd01a41aa67c41370709c37883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33830726&rfr_iscdi=true