Loading…

Analysis of the Gut Microbiota: An Emerging Source of Biomarkers for Immune Checkpoint Blockade Therapy in Non-Small Cell Lung Cancer

Background: The human gut harbors around 1013–1014 microorganisms, collectively referred to as gut microbiota. Recent studies have found that the gut microbiota may have an impact on the interaction between immune regulation and anti-cancer immunotherapies. Methods: In order to characterize the dive...

Full description

Saved in:
Bibliographic Details
Published in:Cancers 2021-05, Vol.13 (11), p.2514
Main Authors: Zhang, Feiyu, Ferrero, Macarena, Dong, Ning, D’Auria, Giuseppe, Reyes-Prieto, Mariana, Herreros-Pomares, Alejandro, Calabuig-Fariñas, Silvia, Duréndez, Elena, Aparisi, Francisco, Blasco, Ana, García, Clara, Camps, Carlos, Jantus-Lewintre, Eloisa, Sirera, Rafael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-58f5c4b90ac1a2f3d6df7e0b723876eb10bcbade1ad5f876ac8578d78f0973933
cites cdi_FETCH-LOGICAL-c398t-58f5c4b90ac1a2f3d6df7e0b723876eb10bcbade1ad5f876ac8578d78f0973933
container_end_page
container_issue 11
container_start_page 2514
container_title Cancers
container_volume 13
creator Zhang, Feiyu
Ferrero, Macarena
Dong, Ning
D’Auria, Giuseppe
Reyes-Prieto, Mariana
Herreros-Pomares, Alejandro
Calabuig-Fariñas, Silvia
Duréndez, Elena
Aparisi, Francisco
Blasco, Ana
García, Clara
Camps, Carlos
Jantus-Lewintre, Eloisa
Sirera, Rafael
description Background: The human gut harbors around 1013–1014 microorganisms, collectively referred to as gut microbiota. Recent studies have found that the gut microbiota may have an impact on the interaction between immune regulation and anti-cancer immunotherapies. Methods: In order to characterize the diversity and composition of commensal microbiota and its relationship with response to immune checkpoint blockade (ICB), 16S ribosomal DNA (rDNA) sequencing was performed on 69 stool samples from advanced non-small cell lung cancer (NSCLC) patients prior to treatment with ICB. Results: The use of antibiotics and ICB-related skin toxicity were significantly associated with reduced gut microbiota diversity. However, antibiotics (ATB) usage was not related to low ICB efficacy. Phascolarctobacterium was enriched in patients with clinical benefit and correlated with prolonged progression-free survival, whereas Dialister was more represented in patients with progressive disease, and its higher relative abundance was associated with reduced progression-free survival and overall survival, with independent prognostic value in multivariate analysis. Conclusions: Our results corroborate the relation between the baseline gut microbiota composition and ICB clinical outcomes in advanced NSCLC patients, and provide novel potential predictive and prognostic biomarkers for immunotherapy in NSCLC.
doi_str_mv 10.3390/cancers13112514
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8196639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536480176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-58f5c4b90ac1a2f3d6df7e0b723876eb10bcbade1ad5f876ac8578d78f0973933</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhS0EotXQNVtLbNiE2nHiBwukaVRKpQEWLWvLca5n3EnswU6Q5gfwv3EfQlAv7Cv707k-5yL0lpIPjClybk2wkDJllNYtbV6g05qIuuJcNS__qU_QWc53pCzGqODiNTphDeFM1uoU_V4HMx6zzzg6PO8AXy0z_uptir2Ps_mI1wFfTpC2PmzxTVyShXvywsfJpH3pjl1M-HqalgC424HdH6IPM74Yo92bAfDtDpI5HLEP-FsM1c1kxhF3ULbNUiS7Bw9v0CtnxgxnT-cK_fh8edt9qTbfr6679aayTMm5aqVrbdMrYiw1tWMDH5wA0ouaScGhp6S3fWlKzdC6cmOsbIUchHRECaYYW6FPj7qHpZ9gsBDmZEZ9SL64OepovP7_Jfid3sZfWlLFeVFYofdPAin-XCDPevLZFjcmQFyyrlvGG0lKzAV99wy9K_GVtB8oxUmZjSjU-SNVEs85gfv7GUr0_ZT1symzP_SBm7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539606697</pqid></control><display><type>article</type><title>Analysis of the Gut Microbiota: An Emerging Source of Biomarkers for Immune Checkpoint Blockade Therapy in Non-Small Cell Lung Cancer</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Zhang, Feiyu ; Ferrero, Macarena ; Dong, Ning ; D’Auria, Giuseppe ; Reyes-Prieto, Mariana ; Herreros-Pomares, Alejandro ; Calabuig-Fariñas, Silvia ; Duréndez, Elena ; Aparisi, Francisco ; Blasco, Ana ; García, Clara ; Camps, Carlos ; Jantus-Lewintre, Eloisa ; Sirera, Rafael</creator><creatorcontrib>Zhang, Feiyu ; Ferrero, Macarena ; Dong, Ning ; D’Auria, Giuseppe ; Reyes-Prieto, Mariana ; Herreros-Pomares, Alejandro ; Calabuig-Fariñas, Silvia ; Duréndez, Elena ; Aparisi, Francisco ; Blasco, Ana ; García, Clara ; Camps, Carlos ; Jantus-Lewintre, Eloisa ; Sirera, Rafael</creatorcontrib><description>Background: The human gut harbors around 1013–1014 microorganisms, collectively referred to as gut microbiota. Recent studies have found that the gut microbiota may have an impact on the interaction between immune regulation and anti-cancer immunotherapies. Methods: In order to characterize the diversity and composition of commensal microbiota and its relationship with response to immune checkpoint blockade (ICB), 16S ribosomal DNA (rDNA) sequencing was performed on 69 stool samples from advanced non-small cell lung cancer (NSCLC) patients prior to treatment with ICB. Results: The use of antibiotics and ICB-related skin toxicity were significantly associated with reduced gut microbiota diversity. However, antibiotics (ATB) usage was not related to low ICB efficacy. Phascolarctobacterium was enriched in patients with clinical benefit and correlated with prolonged progression-free survival, whereas Dialister was more represented in patients with progressive disease, and its higher relative abundance was associated with reduced progression-free survival and overall survival, with independent prognostic value in multivariate analysis. Conclusions: Our results corroborate the relation between the baseline gut microbiota composition and ICB clinical outcomes in advanced NSCLC patients, and provide novel potential predictive and prognostic biomarkers for immunotherapy in NSCLC.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers13112514</identifier><identifier>PMID: 34063829</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antibiotics ; Biomarkers ; Cancer immunotherapy ; Clinical outcomes ; Consortia ; Dendritic cells ; Disease ; DNA sequencing ; Immune checkpoint ; Immunoregulation ; Immunotherapy ; Intestinal microflora ; Lung cancer ; Microbiota ; Microorganisms ; Multivariate analysis ; Mutation ; Non-small cell lung carcinoma ; Patients ; PD-1 protein ; PD-L1 protein ; Ribosomal DNA ; Small cell lung carcinoma ; Toxicity ; Tumors</subject><ispartof>Cancers, 2021-05, Vol.13 (11), p.2514</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-58f5c4b90ac1a2f3d6df7e0b723876eb10bcbade1ad5f876ac8578d78f0973933</citedby><cites>FETCH-LOGICAL-c398t-58f5c4b90ac1a2f3d6df7e0b723876eb10bcbade1ad5f876ac8578d78f0973933</cites><orcidid>0000-0002-7304-7796 ; 0000-0001-9470-9800 ; 0000-0003-0672-2541 ; 0000-0003-0188-5165 ; 0000-0001-7749-174X ; 0000-0001-6292-2420 ; 0000-0003-3838-097X ; 0000-0001-7395-4380 ; 0000-0003-4631-9378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2539606697/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2539606697?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><creatorcontrib>Zhang, Feiyu</creatorcontrib><creatorcontrib>Ferrero, Macarena</creatorcontrib><creatorcontrib>Dong, Ning</creatorcontrib><creatorcontrib>D’Auria, Giuseppe</creatorcontrib><creatorcontrib>Reyes-Prieto, Mariana</creatorcontrib><creatorcontrib>Herreros-Pomares, Alejandro</creatorcontrib><creatorcontrib>Calabuig-Fariñas, Silvia</creatorcontrib><creatorcontrib>Duréndez, Elena</creatorcontrib><creatorcontrib>Aparisi, Francisco</creatorcontrib><creatorcontrib>Blasco, Ana</creatorcontrib><creatorcontrib>García, Clara</creatorcontrib><creatorcontrib>Camps, Carlos</creatorcontrib><creatorcontrib>Jantus-Lewintre, Eloisa</creatorcontrib><creatorcontrib>Sirera, Rafael</creatorcontrib><title>Analysis of the Gut Microbiota: An Emerging Source of Biomarkers for Immune Checkpoint Blockade Therapy in Non-Small Cell Lung Cancer</title><title>Cancers</title><description>Background: The human gut harbors around 1013–1014 microorganisms, collectively referred to as gut microbiota. Recent studies have found that the gut microbiota may have an impact on the interaction between immune regulation and anti-cancer immunotherapies. Methods: In order to characterize the diversity and composition of commensal microbiota and its relationship with response to immune checkpoint blockade (ICB), 16S ribosomal DNA (rDNA) sequencing was performed on 69 stool samples from advanced non-small cell lung cancer (NSCLC) patients prior to treatment with ICB. Results: The use of antibiotics and ICB-related skin toxicity were significantly associated with reduced gut microbiota diversity. However, antibiotics (ATB) usage was not related to low ICB efficacy. Phascolarctobacterium was enriched in patients with clinical benefit and correlated with prolonged progression-free survival, whereas Dialister was more represented in patients with progressive disease, and its higher relative abundance was associated with reduced progression-free survival and overall survival, with independent prognostic value in multivariate analysis. Conclusions: Our results corroborate the relation between the baseline gut microbiota composition and ICB clinical outcomes in advanced NSCLC patients, and provide novel potential predictive and prognostic biomarkers for immunotherapy in NSCLC.</description><subject>Antibiotics</subject><subject>Biomarkers</subject><subject>Cancer immunotherapy</subject><subject>Clinical outcomes</subject><subject>Consortia</subject><subject>Dendritic cells</subject><subject>Disease</subject><subject>DNA sequencing</subject><subject>Immune checkpoint</subject><subject>Immunoregulation</subject><subject>Immunotherapy</subject><subject>Intestinal microflora</subject><subject>Lung cancer</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Multivariate analysis</subject><subject>Mutation</subject><subject>Non-small cell lung carcinoma</subject><subject>Patients</subject><subject>PD-1 protein</subject><subject>PD-L1 protein</subject><subject>Ribosomal DNA</subject><subject>Small cell lung carcinoma</subject><subject>Toxicity</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkUtv1DAUhS0EotXQNVtLbNiE2nHiBwukaVRKpQEWLWvLca5n3EnswU6Q5gfwv3EfQlAv7Cv707k-5yL0lpIPjClybk2wkDJllNYtbV6g05qIuuJcNS__qU_QWc53pCzGqODiNTphDeFM1uoU_V4HMx6zzzg6PO8AXy0z_uptir2Ps_mI1wFfTpC2PmzxTVyShXvywsfJpH3pjl1M-HqalgC424HdH6IPM74Yo92bAfDtDpI5HLEP-FsM1c1kxhF3ULbNUiS7Bw9v0CtnxgxnT-cK_fh8edt9qTbfr6679aayTMm5aqVrbdMrYiw1tWMDH5wA0ouaScGhp6S3fWlKzdC6cmOsbIUchHRECaYYW6FPj7qHpZ9gsBDmZEZ9SL64OepovP7_Jfid3sZfWlLFeVFYofdPAin-XCDPevLZFjcmQFyyrlvGG0lKzAV99wy9K_GVtB8oxUmZjSjU-SNVEs85gfv7GUr0_ZT1symzP_SBm7w</recordid><startdate>20210521</startdate><enddate>20210521</enddate><creator>Zhang, Feiyu</creator><creator>Ferrero, Macarena</creator><creator>Dong, Ning</creator><creator>D’Auria, Giuseppe</creator><creator>Reyes-Prieto, Mariana</creator><creator>Herreros-Pomares, Alejandro</creator><creator>Calabuig-Fariñas, Silvia</creator><creator>Duréndez, Elena</creator><creator>Aparisi, Francisco</creator><creator>Blasco, Ana</creator><creator>García, Clara</creator><creator>Camps, Carlos</creator><creator>Jantus-Lewintre, Eloisa</creator><creator>Sirera, Rafael</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7304-7796</orcidid><orcidid>https://orcid.org/0000-0001-9470-9800</orcidid><orcidid>https://orcid.org/0000-0003-0672-2541</orcidid><orcidid>https://orcid.org/0000-0003-0188-5165</orcidid><orcidid>https://orcid.org/0000-0001-7749-174X</orcidid><orcidid>https://orcid.org/0000-0001-6292-2420</orcidid><orcidid>https://orcid.org/0000-0003-3838-097X</orcidid><orcidid>https://orcid.org/0000-0001-7395-4380</orcidid><orcidid>https://orcid.org/0000-0003-4631-9378</orcidid></search><sort><creationdate>20210521</creationdate><title>Analysis of the Gut Microbiota: An Emerging Source of Biomarkers for Immune Checkpoint Blockade Therapy in Non-Small Cell Lung Cancer</title><author>Zhang, Feiyu ; Ferrero, Macarena ; Dong, Ning ; D’Auria, Giuseppe ; Reyes-Prieto, Mariana ; Herreros-Pomares, Alejandro ; Calabuig-Fariñas, Silvia ; Duréndez, Elena ; Aparisi, Francisco ; Blasco, Ana ; García, Clara ; Camps, Carlos ; Jantus-Lewintre, Eloisa ; Sirera, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-58f5c4b90ac1a2f3d6df7e0b723876eb10bcbade1ad5f876ac8578d78f0973933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antibiotics</topic><topic>Biomarkers</topic><topic>Cancer immunotherapy</topic><topic>Clinical outcomes</topic><topic>Consortia</topic><topic>Dendritic cells</topic><topic>Disease</topic><topic>DNA sequencing</topic><topic>Immune checkpoint</topic><topic>Immunoregulation</topic><topic>Immunotherapy</topic><topic>Intestinal microflora</topic><topic>Lung cancer</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Multivariate analysis</topic><topic>Mutation</topic><topic>Non-small cell lung carcinoma</topic><topic>Patients</topic><topic>PD-1 protein</topic><topic>PD-L1 protein</topic><topic>Ribosomal DNA</topic><topic>Small cell lung carcinoma</topic><topic>Toxicity</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Feiyu</creatorcontrib><creatorcontrib>Ferrero, Macarena</creatorcontrib><creatorcontrib>Dong, Ning</creatorcontrib><creatorcontrib>D’Auria, Giuseppe</creatorcontrib><creatorcontrib>Reyes-Prieto, Mariana</creatorcontrib><creatorcontrib>Herreros-Pomares, Alejandro</creatorcontrib><creatorcontrib>Calabuig-Fariñas, Silvia</creatorcontrib><creatorcontrib>Duréndez, Elena</creatorcontrib><creatorcontrib>Aparisi, Francisco</creatorcontrib><creatorcontrib>Blasco, Ana</creatorcontrib><creatorcontrib>García, Clara</creatorcontrib><creatorcontrib>Camps, Carlos</creatorcontrib><creatorcontrib>Jantus-Lewintre, Eloisa</creatorcontrib><creatorcontrib>Sirera, Rafael</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Feiyu</au><au>Ferrero, Macarena</au><au>Dong, Ning</au><au>D’Auria, Giuseppe</au><au>Reyes-Prieto, Mariana</au><au>Herreros-Pomares, Alejandro</au><au>Calabuig-Fariñas, Silvia</au><au>Duréndez, Elena</au><au>Aparisi, Francisco</au><au>Blasco, Ana</au><au>García, Clara</au><au>Camps, Carlos</au><au>Jantus-Lewintre, Eloisa</au><au>Sirera, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the Gut Microbiota: An Emerging Source of Biomarkers for Immune Checkpoint Blockade Therapy in Non-Small Cell Lung Cancer</atitle><jtitle>Cancers</jtitle><date>2021-05-21</date><risdate>2021</risdate><volume>13</volume><issue>11</issue><spage>2514</spage><pages>2514-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Background: The human gut harbors around 1013–1014 microorganisms, collectively referred to as gut microbiota. Recent studies have found that the gut microbiota may have an impact on the interaction between immune regulation and anti-cancer immunotherapies. Methods: In order to characterize the diversity and composition of commensal microbiota and its relationship with response to immune checkpoint blockade (ICB), 16S ribosomal DNA (rDNA) sequencing was performed on 69 stool samples from advanced non-small cell lung cancer (NSCLC) patients prior to treatment with ICB. Results: The use of antibiotics and ICB-related skin toxicity were significantly associated with reduced gut microbiota diversity. However, antibiotics (ATB) usage was not related to low ICB efficacy. Phascolarctobacterium was enriched in patients with clinical benefit and correlated with prolonged progression-free survival, whereas Dialister was more represented in patients with progressive disease, and its higher relative abundance was associated with reduced progression-free survival and overall survival, with independent prognostic value in multivariate analysis. Conclusions: Our results corroborate the relation between the baseline gut microbiota composition and ICB clinical outcomes in advanced NSCLC patients, and provide novel potential predictive and prognostic biomarkers for immunotherapy in NSCLC.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34063829</pmid><doi>10.3390/cancers13112514</doi><orcidid>https://orcid.org/0000-0002-7304-7796</orcidid><orcidid>https://orcid.org/0000-0001-9470-9800</orcidid><orcidid>https://orcid.org/0000-0003-0672-2541</orcidid><orcidid>https://orcid.org/0000-0003-0188-5165</orcidid><orcidid>https://orcid.org/0000-0001-7749-174X</orcidid><orcidid>https://orcid.org/0000-0001-6292-2420</orcidid><orcidid>https://orcid.org/0000-0003-3838-097X</orcidid><orcidid>https://orcid.org/0000-0001-7395-4380</orcidid><orcidid>https://orcid.org/0000-0003-4631-9378</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2021-05, Vol.13 (11), p.2514
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8196639
source Publicly Available Content (ProQuest); PubMed Central
subjects Antibiotics
Biomarkers
Cancer immunotherapy
Clinical outcomes
Consortia
Dendritic cells
Disease
DNA sequencing
Immune checkpoint
Immunoregulation
Immunotherapy
Intestinal microflora
Lung cancer
Microbiota
Microorganisms
Multivariate analysis
Mutation
Non-small cell lung carcinoma
Patients
PD-1 protein
PD-L1 protein
Ribosomal DNA
Small cell lung carcinoma
Toxicity
Tumors
title Analysis of the Gut Microbiota: An Emerging Source of Biomarkers for Immune Checkpoint Blockade Therapy in Non-Small Cell Lung Cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20Gut%20Microbiota:%20An%20Emerging%20Source%20of%20Biomarkers%20for%20Immune%20Checkpoint%20Blockade%20Therapy%20in%20Non-Small%20Cell%20Lung%20Cancer&rft.jtitle=Cancers&rft.au=Zhang,%20Feiyu&rft.date=2021-05-21&rft.volume=13&rft.issue=11&rft.spage=2514&rft.pages=2514-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers13112514&rft_dat=%3Cproquest_pubme%3E2536480176%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-58f5c4b90ac1a2f3d6df7e0b723876eb10bcbade1ad5f876ac8578d78f0973933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539606697&rft_id=info:pmid/34063829&rfr_iscdi=true