Loading…
Gene expression plasticity and desert adaptation in house mice
Understanding how organisms adapt to new environments is a key problem in evolution, yet it remains unclear whether phenotypic plasticity generally facilitates or hinders this process. Here we studied evolved and plastic responses to water-stress in lab-born descendants of wild house mice (Mus muscu...
Saved in:
Published in: | Evolution 2021-06, Vol.75 (6), p.1477-1491 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding how organisms adapt to new environments is a key problem in evolution, yet it remains unclear whether phenotypic plasticity generally facilitates or hinders this process. Here we studied evolved and plastic responses to water-stress in lab-born descendants of wild house mice (Mus musculus domesticus) collected from desert and non-desert environments and measured gene expression and organismal phenotypes under control and water-stressed conditions. After many generations in the lab, desert mice consumed significantly less water than mice from other localities, indicating that this difference has a genetic basis. Under water-stress, desert mice maintained more weight than non-desert mice, and exhibited differences in blood chemistry related to osmoregulatory function. Gene expression in the kidney revealed evolved differences between mice from different environments as well as plastic responses between hydrated and dehydrated mice. Desert mice showed reduced expression plasticity under water-stress compared to non-desert mice. Importantly, non-desert mice under water-stress generally showed shifts toward desertlike expression, consistent with adaptive plasticity. Finally, we identify several co-expression modules linked to phenotypes of interest. These findings provide evidence for local adaptation after a recent invasion and suggest that adaptive plasticity may have facilitated colonization of the desert environment. |
---|---|
ISSN: | 0014-3820 1558-5646 |
DOI: | 10.1111/evo.14172 |