Loading…
In vivo measurements of spinal stiffness according to a stepwise increase of axial load
Background The spine has a complex motor control. Its different stabilization mechanisms through passive, active, and neurological subsystems may result in spinal stiffness. To better understand lumbar spinal motor control, this study aimed to measure the effects of increasing the axial load on spin...
Saved in:
Published in: | European journal of applied physiology 2021-08, Vol.121 (8), p.2277-2283 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
The spine has a complex motor control. Its different stabilization mechanisms through passive, active, and neurological subsystems may result in spinal stiffness. To better understand lumbar spinal motor control, this study aimed to measure the effects of increasing the axial load on spinal stiffness.
Methods
A total of 19 healthy young participants (mean age, 24 ± 2.1 years; 8 males and 11 females) were assessed in an upright standing position. Under different axial loads, the posterior-to-anterior spinal stiffness of the thoracic and lumbar spine was measured. Loads were 0%, 10%, 45%, and 80% of the participant’s body weight.
Results
Data were normally distributed and showed excellent reliability. A repeated-measures analysis of variance with a Greenhouse–Geisser correction showed an effect of the loading condition on the mean spinal stiffness [F (2.6, 744) = 3.456,
p
|
---|---|
ISSN: | 1439-6319 1439-6327 |
DOI: | 10.1007/s00421-021-04705-5 |