Loading…

Intrusion detection by machine learning for multimedia platform

The multimedia service company, Netflix, increased the number of new subscribers during the Coronavirus pandemic age. Intrusion detection systems for multimedia platforms can prevent the platform from network attacks. An intelligent intrusion detection system is proposed for the security IP Multimed...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications 2021-08, Vol.80 (19), p.29643-29656
Main Authors: Hsu, Chih-Yu, Wang, Shuai, Qiao, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The multimedia service company, Netflix, increased the number of new subscribers during the Coronavirus pandemic age. Intrusion detection systems for multimedia platforms can prevent the platform from network attacks. An intelligent intrusion detection system is proposed for the security IP Multimedia Subsystem (IMS) based on machine learning technology. For increasing the accuracy of the classifiers, it is vital to select the critical features to construct the intrusion detection system. Two-class classifiers, including the Decision Tree, Support Vector Machine, and Naive Bayesian, are selected to evaluate intrusion detection accuracy. According to the three classifiers’ accuracy values, the most critical features are selected based on the features’ ranking orders. Six critical features are selected:Service, dst_host_same_srv_rate, Flag, Protocol Type, Dst_host_rerror_rate, and Count. Numerical comparison with state_of_the_art shows that critical features improve intrusion detection accuracy, which can be better than the deep learning method.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-021-11100-x