Loading…
Internet of vehicles and autonomous systems with AI for medical things
The current world faces a considerable traffic rate on roads due to the increase in various types of vehicles. It caused emergency vehicles to delay and increasing the patients' health risk factor. Internet of vehicle-based artificial neural network (IoV-ANN) has been proposed for effective hea...
Saved in:
Published in: | Soft computing (Berlin, Germany) Germany), 2023-01, p.1-13 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The current world faces a considerable traffic rate on roads due to the increase in various types of vehicles. It caused emergency vehicles to delay and increasing the patients' health risk factor. Internet of vehicle-based artificial neural network (IoV-ANN) has been proposed for effective health autonomous system in medical things. The proposed IoV-ANN provides a secure network to monitor and track the vehicle's motion using the global positioning system. It consists of an autonomous system which is enabled with an artificial neural network (ANN). ANN model has three layers. First layers collect the data using IoV sensors. Second or hidden layers process the sensor data, predict the road's traffic condition and reroute the emergency vehicle to an exact route. IoV-ANN helps to reduce road congestion in this article to enhance the timely functioning of an emergency vehicle. ANN categorizes the congestion networks of traffic. Traffic restrictions such as changing the queue gap in the road signals and the alternative roads are altered automatically due to congestion. It allows the government to develop ideas for alternate routes to enhance traffic control. The output layer gives commands to the driver autonomously. The simulation analysis of the proposed method proved that the system could work independently. The IoV-ANN achieves the highest performance rate of (97.89%), with a reduced error rate (9.12%) traffic congestion rate (10.31%), travel period (32 s), vehicle detection rate (93.61%), classification accuracy (95.02%), MAPE (8.4%), throughput rate (93.50%) when compared to other popular methods. |
---|---|
ISSN: | 1432-7643 1433-7479 |
DOI: | 10.1007/s00500-021-06035-2 |