Loading…
Radical Addition to N,N‑Diaryl Dihydrophenazine Photoredox Catalysts and Implications in Photoinduced Organocatalyzed Atom Transfer Radical Polymerization
Photoinduced organocatalyzed atom transfer radical polymerization (O-ATRP) is a controlled radical polymerization methodology catalyzed by organic photoredox catalysts (PCs). In an efficient O-ATRP system, good control over molecular weight with an initiator efficiency (I* = M n,theo/M n,exp × 100%)...
Saved in:
Published in: | Macromolecules 2021-05, Vol.54 (10), p.4507-4516 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Photoinduced organocatalyzed atom transfer radical polymerization (O-ATRP) is a controlled radical polymerization methodology catalyzed by organic photoredox catalysts (PCs). In an efficient O-ATRP system, good control over molecular weight with an initiator efficiency (I* = M n,theo/M n,exp × 100%) near unity is achieved, and the synthesized polymers possess a low dispersity (Đ). N,N-Diaryl dihydrophenazine catalysts typically produce polymers with low dispersity (Đ < 1.3) but with less than unity molecular weight control (I* ∼ 60–80%). This work explores the termination reactions that lead to decreased control over polymer molecular weight and identifies a reaction leading to radical addition to the phenazine core. This reaction can occur with radicals generated through reduction of the ATRP initiator or the polymer chain end. In addition to causing a decrease in I*, this reactivity modifies the properties of the PC, ultimately impacting polymerization control in O-ATRP. With this insight in mind, a new family of core-substituted N,N-diaryl dihydrophenazines is synthesized from commercially available ATRP initiators and employed in O-ATRP. These new core-substituted PCs improve both I* and Đ in the O-ATRP of MMA, while minimizing undesired side reactions during the polymerization. Further, the ability of one core-substituted PC to operate at low catalyst loadings is demonstrated, with minimal loss of polymerization control down to 100 ppm (weight average molecular weight [M w] = 10.8 kDa, Đ = 1.17, I* = 104% vs M w = 8.26, Đ = 1.10, I* = 107% at 1000 ppm) and signs of a controlled polymerization down to 10 ppm of the catalyst (M w = 12.1 kDa, Đ = 1.36, I* = 107%). |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/acs.macromol.1c00501 |