Loading…

Acute Physiological Response of Lumbar Intervertebral Discs to High-load Deadlift Exercise

Purpose: We aimed to evaluate the acute physiological effects of high-load deadlift exercise on the lumbar intervertebral discs using MR diffusion-weighted imaging (DWI).Methods: Fifteen volunteers (11 men and 4 women; 23.2 ± 3.3 years) without lumbar intervertebral disc degeneration performed deadl...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic Resonance in Medical Sciences 2021, Vol.20(3), pp.290-294
Main Authors: Yanagisawa, Osamu, Oshikawa, Tomoki, Matsunaga, Naoto, Adachi, Gen, Kaneoka, Koji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose: We aimed to evaluate the acute physiological effects of high-load deadlift exercise on the lumbar intervertebral discs using MR diffusion-weighted imaging (DWI).Methods: Fifteen volunteers (11 men and 4 women; 23.2 ± 3.3 years) without lumbar intervertebral disc degeneration performed deadlift exercise (70% of 1 repetition maximum, 6 repetitions, 5 sets, 90 s rest between sets) using a Smith machine. Sagittal MR diffusion-weighted images of the lumbar intervertebral discs were obtained using a 1.5-Tesla MR system with a spine coil before and immediately after the exercise. We calculated apparent diffusion coefficient (ADC; an index of water movement) of the nucleus pulposus from diffusion weighted images at all lumbar intervertebral discs (L1/2 through L5/S1).Results: All lumbar intervertebral discs showed significantly decreased ADC values immediately after deadlift exercise (L1/2, −2.8%; L2/3, −2.1%; L3/4, −2.8%; L4/5, −4.9%; L5/S1, −6.2%; P < 0.01). In addition, the rate of ADC decrease of the L5/S1 disc was significantly greater than those of the L1/2 (P = 0.017), L2/3 (P < 0.01), and L3/4 (P = 0.02) discs.Conclusion: The movement of water molecules within the lumbar intervertebral discs is suppressed by high-load deadlift exercise, which would be attributed to mechanical stress on the lumbar intervertebral discs during deadlift exercise. In particular, the L5/S1 disc is subjected to greater mechanical stress than the other lumbar intervertebral discs.
ISSN:1347-3182
1880-2206
DOI:10.2463/mrms.mp.2020-0052