Loading…
Utilizing the wavelet transform’s structure in compressed sensing
Compressed sensing has empowered quality image reconstruction with fewer data samples than previously thought possible. These techniques rely on a sparsifying linear transformation. The Daubechies wavelet transform is commonly used for this purpose. In this work, we take advantage of the structure o...
Saved in:
Published in: | Signal, image and video processing image and video processing, 2021-10, Vol.15 (7), p.1407-1414 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Compressed sensing has empowered quality image reconstruction with fewer data samples than previously thought possible. These techniques rely on a sparsifying linear transformation. The Daubechies wavelet transform is commonly used for this purpose. In this work, we take advantage of the structure of this wavelet transform and identify an affine transformation that increases the sparsity of the result. After inclusion of this affine transformation, we modify the resulting optimization problem to comply with the form of the Basis Pursuit Denoising problem. Finally, we show theoretically that this yields a lower bound on the error of the reconstruction and present results where solving this modified problem yields images of higher quality for the same sampling patterns using both magnetic resonance and optical images. |
---|---|
ISSN: | 1863-1703 1863-1711 |
DOI: | 10.1007/s11760-021-01872-y |