Loading…

Development of an entirely plasmid-based reverse genetics system for 12-segmented double-stranded RNA viruses

The family Reoviridae is a nonenveloped virus group with a double-stranded (ds) RNA genome comprising 9 to 12 segments. In the family Reoviridae, the genera Cardoreovirus, Phytoreovirus, Seadornavirus, Mycoreovirus, and Coltivirus contain virus species having 12-segmented dsRNA genomes. Reverse gene...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2021-10, Vol.118 (42), p.1-8
Main Authors: Nouda, Ryotaro, Minami, Shohei, Kanai, Yuta, Kawagishi, Takahiro, Nurdin, Jeffery A., Yamasaki, Moeko, Kuwata, Ryusei, Shimoda, Hiroshi, Maeda, Ken, Kobayashi, Takeshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-b416f37e1bacc072d62be63c00139ae49567d3a19c41d24734fc1ca23fd09d673
cites cdi_FETCH-LOGICAL-c509t-b416f37e1bacc072d62be63c00139ae49567d3a19c41d24734fc1ca23fd09d673
container_end_page 8
container_issue 42
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Nouda, Ryotaro
Minami, Shohei
Kanai, Yuta
Kawagishi, Takahiro
Nurdin, Jeffery A.
Yamasaki, Moeko
Kuwata, Ryusei
Shimoda, Hiroshi
Maeda, Ken
Kobayashi, Takeshi
description The family Reoviridae is a nonenveloped virus group with a double-stranded (ds) RNA genome comprising 9 to 12 segments. In the family Reoviridae, the genera Cardoreovirus, Phytoreovirus, Seadornavirus, Mycoreovirus, and Coltivirus contain virus species having 12-segmented dsRNA genomes. Reverse genetics systems used to generate recombinant infectious viruses are powerful tools for investigating viral gene function and for developing vaccines and therapeutic interventions. Generally, this methodology has been utilized for Reoviridae viruses such as Orthoreovirus, Orbivirus, Cypovirus, and Rotavirus, which have genomes with 10 or 11 segments, respectively. However, no reverse genetics system has been developed for Reoviridae viruses with a genome harboring 12 segments. Herein, we describe development of an entire plasmid-based reverse genetics system for Tarumizu tick virus (TarTV) (genus Coltivirus, family Reoviridae), which has a genome of 12 segments. Recombinant TarTVs were generated by transfection of 12 cloned complementary DNAs encoding the TarTV genome into baby hamster kidney cells expressing T7 RNA polymerase. Using this technology, we generated VP12 mutant viruses and demonstrated that VP12 is an N-glycosylated protein. We also generated a reporter virus expressing the HiBiT-tagged VP8 protein. This reverse genetics system will increase our understanding of not only the biology of the genus Coltivirus but also the replication machinery of the family Reoviridae.
doi_str_mv 10.1073/pnas.2105334118
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8594578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27093486</jstor_id><sourcerecordid>27093486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-b416f37e1bacc072d62be63c00139ae49567d3a19c41d24734fc1ca23fd09d673</originalsourceid><addsrcrecordid>eNpdkctr3DAQh0VpaLZpzz21CHrpxYletqxLIaSvQEigtGchS-OtF9tyNfbC_veV2XT7OGnEfPMxw4-QV5xdcqbl1TQ6vBSclVIqzusnZMOZ4UWlDHtKNowJXdRKqHPyHHHHGDNlzZ6Rc6kqWZZGbsjwAfbQx2mAcaaxpW6kueoS9Ac69Q6HLhSNQwg0ZTAh0C2MMHceKR5whoG2MVEuCoTt6shgiEvTQ4FzcmPI_6_313TfpQUBX5Cz1vUILx_fC_L908dvN1-Ku4fPtzfXd4UvmZmLRvGqlRp447xnWoRKNFBJzxiXxoEyZaWDdNx4xYNQWqrWc--EbAMzodLygrw_eqelGSD4vFhyvZ1SN7h0sNF19t_O2P2w27i3dWlUqessePcoSPHnAjjboUMPfe9GiAtaUdZcGMbVir79D93FJY35vJXKNq2kzNTVkfIpIiZoT8twZtco7Rql_RNlnnjz9w0n_nd2GXh9BHY4x3TqC82MVHUlfwEVW6Wu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584577433</pqid></control><display><type>article</type><title>Development of an entirely plasmid-based reverse genetics system for 12-segmented double-stranded RNA viruses</title><source>JSTOR Archival Journals</source><source>PubMed Central</source><creator>Nouda, Ryotaro ; Minami, Shohei ; Kanai, Yuta ; Kawagishi, Takahiro ; Nurdin, Jeffery A. ; Yamasaki, Moeko ; Kuwata, Ryusei ; Shimoda, Hiroshi ; Maeda, Ken ; Kobayashi, Takeshi</creator><creatorcontrib>Nouda, Ryotaro ; Minami, Shohei ; Kanai, Yuta ; Kawagishi, Takahiro ; Nurdin, Jeffery A. ; Yamasaki, Moeko ; Kuwata, Ryusei ; Shimoda, Hiroshi ; Maeda, Ken ; Kobayashi, Takeshi</creatorcontrib><description>The family Reoviridae is a nonenveloped virus group with a double-stranded (ds) RNA genome comprising 9 to 12 segments. In the family Reoviridae, the genera Cardoreovirus, Phytoreovirus, Seadornavirus, Mycoreovirus, and Coltivirus contain virus species having 12-segmented dsRNA genomes. Reverse genetics systems used to generate recombinant infectious viruses are powerful tools for investigating viral gene function and for developing vaccines and therapeutic interventions. Generally, this methodology has been utilized for Reoviridae viruses such as Orthoreovirus, Orbivirus, Cypovirus, and Rotavirus, which have genomes with 10 or 11 segments, respectively. However, no reverse genetics system has been developed for Reoviridae viruses with a genome harboring 12 segments. Herein, we describe development of an entire plasmid-based reverse genetics system for Tarumizu tick virus (TarTV) (genus Coltivirus, family Reoviridae), which has a genome of 12 segments. Recombinant TarTVs were generated by transfection of 12 cloned complementary DNAs encoding the TarTV genome into baby hamster kidney cells expressing T7 RNA polymerase. Using this technology, we generated VP12 mutant viruses and demonstrated that VP12 is an N-glycosylated protein. We also generated a reporter virus expressing the HiBiT-tagged VP8 protein. This reverse genetics system will increase our understanding of not only the biology of the genus Coltivirus but also the replication machinery of the family Reoviridae.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2105334118</identifier><identifier>PMID: 34635593</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cricetinae ; DNA-directed RNA polymerase ; Double-stranded RNA ; Genetics ; Genome, Viral ; Genomes ; Glycosylation ; Mutation ; Plasmids ; Proteins ; Reassortant Viruses - genetics ; Reoviridae ; Reoviridae - genetics ; Ribonucleic acid ; RNA ; RNA polymerase ; RNA viruses ; Rotavirus ; Segments ; Therapeutic applications ; Transfection ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-10, Vol.118 (42), p.1-8</ispartof><rights>Copyright National Academy of Sciences Oct 19, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-b416f37e1bacc072d62be63c00139ae49567d3a19c41d24734fc1ca23fd09d673</citedby><cites>FETCH-LOGICAL-c509t-b416f37e1bacc072d62be63c00139ae49567d3a19c41d24734fc1ca23fd09d673</cites><orcidid>0000-0002-2160-4458 ; 0000-0002-5102-6951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27093486$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27093486$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34635593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nouda, Ryotaro</creatorcontrib><creatorcontrib>Minami, Shohei</creatorcontrib><creatorcontrib>Kanai, Yuta</creatorcontrib><creatorcontrib>Kawagishi, Takahiro</creatorcontrib><creatorcontrib>Nurdin, Jeffery A.</creatorcontrib><creatorcontrib>Yamasaki, Moeko</creatorcontrib><creatorcontrib>Kuwata, Ryusei</creatorcontrib><creatorcontrib>Shimoda, Hiroshi</creatorcontrib><creatorcontrib>Maeda, Ken</creatorcontrib><creatorcontrib>Kobayashi, Takeshi</creatorcontrib><title>Development of an entirely plasmid-based reverse genetics system for 12-segmented double-stranded RNA viruses</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The family Reoviridae is a nonenveloped virus group with a double-stranded (ds) RNA genome comprising 9 to 12 segments. In the family Reoviridae, the genera Cardoreovirus, Phytoreovirus, Seadornavirus, Mycoreovirus, and Coltivirus contain virus species having 12-segmented dsRNA genomes. Reverse genetics systems used to generate recombinant infectious viruses are powerful tools for investigating viral gene function and for developing vaccines and therapeutic interventions. Generally, this methodology has been utilized for Reoviridae viruses such as Orthoreovirus, Orbivirus, Cypovirus, and Rotavirus, which have genomes with 10 or 11 segments, respectively. However, no reverse genetics system has been developed for Reoviridae viruses with a genome harboring 12 segments. Herein, we describe development of an entire plasmid-based reverse genetics system for Tarumizu tick virus (TarTV) (genus Coltivirus, family Reoviridae), which has a genome of 12 segments. Recombinant TarTVs were generated by transfection of 12 cloned complementary DNAs encoding the TarTV genome into baby hamster kidney cells expressing T7 RNA polymerase. Using this technology, we generated VP12 mutant viruses and demonstrated that VP12 is an N-glycosylated protein. We also generated a reporter virus expressing the HiBiT-tagged VP8 protein. This reverse genetics system will increase our understanding of not only the biology of the genus Coltivirus but also the replication machinery of the family Reoviridae.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cricetinae</subject><subject>DNA-directed RNA polymerase</subject><subject>Double-stranded RNA</subject><subject>Genetics</subject><subject>Genome, Viral</subject><subject>Genomes</subject><subject>Glycosylation</subject><subject>Mutation</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Reassortant Viruses - genetics</subject><subject>Reoviridae</subject><subject>Reoviridae - genetics</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA viruses</subject><subject>Rotavirus</subject><subject>Segments</subject><subject>Therapeutic applications</subject><subject>Transfection</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkctr3DAQh0VpaLZpzz21CHrpxYletqxLIaSvQEigtGchS-OtF9tyNfbC_veV2XT7OGnEfPMxw4-QV5xdcqbl1TQ6vBSclVIqzusnZMOZ4UWlDHtKNowJXdRKqHPyHHHHGDNlzZ6Rc6kqWZZGbsjwAfbQx2mAcaaxpW6kueoS9Ac69Q6HLhSNQwg0ZTAh0C2MMHceKR5whoG2MVEuCoTt6shgiEvTQ4FzcmPI_6_313TfpQUBX5Cz1vUILx_fC_L908dvN1-Ku4fPtzfXd4UvmZmLRvGqlRp447xnWoRKNFBJzxiXxoEyZaWDdNx4xYNQWqrWc--EbAMzodLygrw_eqelGSD4vFhyvZ1SN7h0sNF19t_O2P2w27i3dWlUqessePcoSPHnAjjboUMPfe9GiAtaUdZcGMbVir79D93FJY35vJXKNq2kzNTVkfIpIiZoT8twZtco7Rql_RNlnnjz9w0n_nd2GXh9BHY4x3TqC82MVHUlfwEVW6Wu</recordid><startdate>20211019</startdate><enddate>20211019</enddate><creator>Nouda, Ryotaro</creator><creator>Minami, Shohei</creator><creator>Kanai, Yuta</creator><creator>Kawagishi, Takahiro</creator><creator>Nurdin, Jeffery A.</creator><creator>Yamasaki, Moeko</creator><creator>Kuwata, Ryusei</creator><creator>Shimoda, Hiroshi</creator><creator>Maeda, Ken</creator><creator>Kobayashi, Takeshi</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2160-4458</orcidid><orcidid>https://orcid.org/0000-0002-5102-6951</orcidid></search><sort><creationdate>20211019</creationdate><title>Development of an entirely plasmid-based reverse genetics system for 12-segmented double-stranded RNA viruses</title><author>Nouda, Ryotaro ; Minami, Shohei ; Kanai, Yuta ; Kawagishi, Takahiro ; Nurdin, Jeffery A. ; Yamasaki, Moeko ; Kuwata, Ryusei ; Shimoda, Hiroshi ; Maeda, Ken ; Kobayashi, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-b416f37e1bacc072d62be63c00139ae49567d3a19c41d24734fc1ca23fd09d673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cricetinae</topic><topic>DNA-directed RNA polymerase</topic><topic>Double-stranded RNA</topic><topic>Genetics</topic><topic>Genome, Viral</topic><topic>Genomes</topic><topic>Glycosylation</topic><topic>Mutation</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Reassortant Viruses - genetics</topic><topic>Reoviridae</topic><topic>Reoviridae - genetics</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA viruses</topic><topic>Rotavirus</topic><topic>Segments</topic><topic>Therapeutic applications</topic><topic>Transfection</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nouda, Ryotaro</creatorcontrib><creatorcontrib>Minami, Shohei</creatorcontrib><creatorcontrib>Kanai, Yuta</creatorcontrib><creatorcontrib>Kawagishi, Takahiro</creatorcontrib><creatorcontrib>Nurdin, Jeffery A.</creatorcontrib><creatorcontrib>Yamasaki, Moeko</creatorcontrib><creatorcontrib>Kuwata, Ryusei</creatorcontrib><creatorcontrib>Shimoda, Hiroshi</creatorcontrib><creatorcontrib>Maeda, Ken</creatorcontrib><creatorcontrib>Kobayashi, Takeshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nouda, Ryotaro</au><au>Minami, Shohei</au><au>Kanai, Yuta</au><au>Kawagishi, Takahiro</au><au>Nurdin, Jeffery A.</au><au>Yamasaki, Moeko</au><au>Kuwata, Ryusei</au><au>Shimoda, Hiroshi</au><au>Maeda, Ken</au><au>Kobayashi, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an entirely plasmid-based reverse genetics system for 12-segmented double-stranded RNA viruses</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-10-19</date><risdate>2021</risdate><volume>118</volume><issue>42</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The family Reoviridae is a nonenveloped virus group with a double-stranded (ds) RNA genome comprising 9 to 12 segments. In the family Reoviridae, the genera Cardoreovirus, Phytoreovirus, Seadornavirus, Mycoreovirus, and Coltivirus contain virus species having 12-segmented dsRNA genomes. Reverse genetics systems used to generate recombinant infectious viruses are powerful tools for investigating viral gene function and for developing vaccines and therapeutic interventions. Generally, this methodology has been utilized for Reoviridae viruses such as Orthoreovirus, Orbivirus, Cypovirus, and Rotavirus, which have genomes with 10 or 11 segments, respectively. However, no reverse genetics system has been developed for Reoviridae viruses with a genome harboring 12 segments. Herein, we describe development of an entire plasmid-based reverse genetics system for Tarumizu tick virus (TarTV) (genus Coltivirus, family Reoviridae), which has a genome of 12 segments. Recombinant TarTVs were generated by transfection of 12 cloned complementary DNAs encoding the TarTV genome into baby hamster kidney cells expressing T7 RNA polymerase. Using this technology, we generated VP12 mutant viruses and demonstrated that VP12 is an N-glycosylated protein. We also generated a reporter virus expressing the HiBiT-tagged VP8 protein. This reverse genetics system will increase our understanding of not only the biology of the genus Coltivirus but also the replication machinery of the family Reoviridae.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34635593</pmid><doi>10.1073/pnas.2105334118</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2160-4458</orcidid><orcidid>https://orcid.org/0000-0002-5102-6951</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-10, Vol.118 (42), p.1-8
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8594578
source JSTOR Archival Journals; PubMed Central
subjects Animals
Biological Sciences
Cricetinae
DNA-directed RNA polymerase
Double-stranded RNA
Genetics
Genome, Viral
Genomes
Glycosylation
Mutation
Plasmids
Proteins
Reassortant Viruses - genetics
Reoviridae
Reoviridae - genetics
Ribonucleic acid
RNA
RNA polymerase
RNA viruses
Rotavirus
Segments
Therapeutic applications
Transfection
Viruses
title Development of an entirely plasmid-based reverse genetics system for 12-segmented double-stranded RNA viruses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20entirely%20plasmid-based%20reverse%20genetics%20system%20for%2012-segmented%20double-stranded%20RNA%20viruses&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Nouda,%20Ryotaro&rft.date=2021-10-19&rft.volume=118&rft.issue=42&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2105334118&rft_dat=%3Cjstor_pubme%3E27093486%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-b416f37e1bacc072d62be63c00139ae49567d3a19c41d24734fc1ca23fd09d673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2584577433&rft_id=info:pmid/34635593&rft_jstor_id=27093486&rfr_iscdi=true