Loading…
Development of an entirely plasmid-based reverse genetics system for 12-segmented double-stranded RNA viruses
The family Reoviridae is a nonenveloped virus group with a double-stranded (ds) RNA genome comprising 9 to 12 segments. In the family Reoviridae, the genera Cardoreovirus, Phytoreovirus, Seadornavirus, Mycoreovirus, and Coltivirus contain virus species having 12-segmented dsRNA genomes. Reverse gene...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2021-10, Vol.118 (42), p.1-8 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-b416f37e1bacc072d62be63c00139ae49567d3a19c41d24734fc1ca23fd09d673 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-b416f37e1bacc072d62be63c00139ae49567d3a19c41d24734fc1ca23fd09d673 |
container_end_page | 8 |
container_issue | 42 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Nouda, Ryotaro Minami, Shohei Kanai, Yuta Kawagishi, Takahiro Nurdin, Jeffery A. Yamasaki, Moeko Kuwata, Ryusei Shimoda, Hiroshi Maeda, Ken Kobayashi, Takeshi |
description | The family Reoviridae is a nonenveloped virus group with a double-stranded (ds) RNA genome comprising 9 to 12 segments. In the family Reoviridae, the genera Cardoreovirus, Phytoreovirus, Seadornavirus, Mycoreovirus, and Coltivirus contain virus species having 12-segmented dsRNA genomes. Reverse genetics systems used to generate recombinant infectious viruses are powerful tools for investigating viral gene function and for developing vaccines and therapeutic interventions. Generally, this methodology has been utilized for Reoviridae viruses such as Orthoreovirus, Orbivirus, Cypovirus, and Rotavirus, which have genomes with 10 or 11 segments, respectively. However, no reverse genetics system has been developed for Reoviridae viruses with a genome harboring 12 segments. Herein, we describe development of an entire plasmid-based reverse genetics system for Tarumizu tick virus (TarTV) (genus Coltivirus, family Reoviridae), which has a genome of 12 segments. Recombinant TarTVs were generated by transfection of 12 cloned complementary DNAs encoding the TarTV genome into baby hamster kidney cells expressing T7 RNA polymerase. Using this technology, we generated VP12 mutant viruses and demonstrated that VP12 is an N-glycosylated protein. We also generated a reporter virus expressing the HiBiT-tagged VP8 protein. This reverse genetics system will increase our understanding of not only the biology of the genus Coltivirus but also the replication machinery of the family Reoviridae. |
doi_str_mv | 10.1073/pnas.2105334118 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8594578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27093486</jstor_id><sourcerecordid>27093486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-b416f37e1bacc072d62be63c00139ae49567d3a19c41d24734fc1ca23fd09d673</originalsourceid><addsrcrecordid>eNpdkctr3DAQh0VpaLZpzz21CHrpxYletqxLIaSvQEigtGchS-OtF9tyNfbC_veV2XT7OGnEfPMxw4-QV5xdcqbl1TQ6vBSclVIqzusnZMOZ4UWlDHtKNowJXdRKqHPyHHHHGDNlzZ6Rc6kqWZZGbsjwAfbQx2mAcaaxpW6kueoS9Ac69Q6HLhSNQwg0ZTAh0C2MMHceKR5whoG2MVEuCoTt6shgiEvTQ4FzcmPI_6_313TfpQUBX5Cz1vUILx_fC_L908dvN1-Ku4fPtzfXd4UvmZmLRvGqlRp447xnWoRKNFBJzxiXxoEyZaWDdNx4xYNQWqrWc--EbAMzodLygrw_eqelGSD4vFhyvZ1SN7h0sNF19t_O2P2w27i3dWlUqessePcoSPHnAjjboUMPfe9GiAtaUdZcGMbVir79D93FJY35vJXKNq2kzNTVkfIpIiZoT8twZtco7Rql_RNlnnjz9w0n_nd2GXh9BHY4x3TqC82MVHUlfwEVW6Wu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584577433</pqid></control><display><type>article</type><title>Development of an entirely plasmid-based reverse genetics system for 12-segmented double-stranded RNA viruses</title><source>JSTOR Archival Journals</source><source>PubMed Central</source><creator>Nouda, Ryotaro ; Minami, Shohei ; Kanai, Yuta ; Kawagishi, Takahiro ; Nurdin, Jeffery A. ; Yamasaki, Moeko ; Kuwata, Ryusei ; Shimoda, Hiroshi ; Maeda, Ken ; Kobayashi, Takeshi</creator><creatorcontrib>Nouda, Ryotaro ; Minami, Shohei ; Kanai, Yuta ; Kawagishi, Takahiro ; Nurdin, Jeffery A. ; Yamasaki, Moeko ; Kuwata, Ryusei ; Shimoda, Hiroshi ; Maeda, Ken ; Kobayashi, Takeshi</creatorcontrib><description>The family Reoviridae is a nonenveloped virus group with a double-stranded (ds) RNA genome comprising 9 to 12 segments. In the family Reoviridae, the genera Cardoreovirus, Phytoreovirus, Seadornavirus, Mycoreovirus, and Coltivirus contain virus species having 12-segmented dsRNA genomes. Reverse genetics systems used to generate recombinant infectious viruses are powerful tools for investigating viral gene function and for developing vaccines and therapeutic interventions. Generally, this methodology has been utilized for Reoviridae viruses such as Orthoreovirus, Orbivirus, Cypovirus, and Rotavirus, which have genomes with 10 or 11 segments, respectively. However, no reverse genetics system has been developed for Reoviridae viruses with a genome harboring 12 segments. Herein, we describe development of an entire plasmid-based reverse genetics system for Tarumizu tick virus (TarTV) (genus Coltivirus, family Reoviridae), which has a genome of 12 segments. Recombinant TarTVs were generated by transfection of 12 cloned complementary DNAs encoding the TarTV genome into baby hamster kidney cells expressing T7 RNA polymerase. Using this technology, we generated VP12 mutant viruses and demonstrated that VP12 is an N-glycosylated protein. We also generated a reporter virus expressing the HiBiT-tagged VP8 protein. This reverse genetics system will increase our understanding of not only the biology of the genus Coltivirus but also the replication machinery of the family Reoviridae.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2105334118</identifier><identifier>PMID: 34635593</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cricetinae ; DNA-directed RNA polymerase ; Double-stranded RNA ; Genetics ; Genome, Viral ; Genomes ; Glycosylation ; Mutation ; Plasmids ; Proteins ; Reassortant Viruses - genetics ; Reoviridae ; Reoviridae - genetics ; Ribonucleic acid ; RNA ; RNA polymerase ; RNA viruses ; Rotavirus ; Segments ; Therapeutic applications ; Transfection ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-10, Vol.118 (42), p.1-8</ispartof><rights>Copyright National Academy of Sciences Oct 19, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-b416f37e1bacc072d62be63c00139ae49567d3a19c41d24734fc1ca23fd09d673</citedby><cites>FETCH-LOGICAL-c509t-b416f37e1bacc072d62be63c00139ae49567d3a19c41d24734fc1ca23fd09d673</cites><orcidid>0000-0002-2160-4458 ; 0000-0002-5102-6951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27093486$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27093486$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34635593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nouda, Ryotaro</creatorcontrib><creatorcontrib>Minami, Shohei</creatorcontrib><creatorcontrib>Kanai, Yuta</creatorcontrib><creatorcontrib>Kawagishi, Takahiro</creatorcontrib><creatorcontrib>Nurdin, Jeffery A.</creatorcontrib><creatorcontrib>Yamasaki, Moeko</creatorcontrib><creatorcontrib>Kuwata, Ryusei</creatorcontrib><creatorcontrib>Shimoda, Hiroshi</creatorcontrib><creatorcontrib>Maeda, Ken</creatorcontrib><creatorcontrib>Kobayashi, Takeshi</creatorcontrib><title>Development of an entirely plasmid-based reverse genetics system for 12-segmented double-stranded RNA viruses</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The family Reoviridae is a nonenveloped virus group with a double-stranded (ds) RNA genome comprising 9 to 12 segments. In the family Reoviridae, the genera Cardoreovirus, Phytoreovirus, Seadornavirus, Mycoreovirus, and Coltivirus contain virus species having 12-segmented dsRNA genomes. Reverse genetics systems used to generate recombinant infectious viruses are powerful tools for investigating viral gene function and for developing vaccines and therapeutic interventions. Generally, this methodology has been utilized for Reoviridae viruses such as Orthoreovirus, Orbivirus, Cypovirus, and Rotavirus, which have genomes with 10 or 11 segments, respectively. However, no reverse genetics system has been developed for Reoviridae viruses with a genome harboring 12 segments. Herein, we describe development of an entire plasmid-based reverse genetics system for Tarumizu tick virus (TarTV) (genus Coltivirus, family Reoviridae), which has a genome of 12 segments. Recombinant TarTVs were generated by transfection of 12 cloned complementary DNAs encoding the TarTV genome into baby hamster kidney cells expressing T7 RNA polymerase. Using this technology, we generated VP12 mutant viruses and demonstrated that VP12 is an N-glycosylated protein. We also generated a reporter virus expressing the HiBiT-tagged VP8 protein. This reverse genetics system will increase our understanding of not only the biology of the genus Coltivirus but also the replication machinery of the family Reoviridae.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cricetinae</subject><subject>DNA-directed RNA polymerase</subject><subject>Double-stranded RNA</subject><subject>Genetics</subject><subject>Genome, Viral</subject><subject>Genomes</subject><subject>Glycosylation</subject><subject>Mutation</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Reassortant Viruses - genetics</subject><subject>Reoviridae</subject><subject>Reoviridae - genetics</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA viruses</subject><subject>Rotavirus</subject><subject>Segments</subject><subject>Therapeutic applications</subject><subject>Transfection</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkctr3DAQh0VpaLZpzz21CHrpxYletqxLIaSvQEigtGchS-OtF9tyNfbC_veV2XT7OGnEfPMxw4-QV5xdcqbl1TQ6vBSclVIqzusnZMOZ4UWlDHtKNowJXdRKqHPyHHHHGDNlzZ6Rc6kqWZZGbsjwAfbQx2mAcaaxpW6kueoS9Ac69Q6HLhSNQwg0ZTAh0C2MMHceKR5whoG2MVEuCoTt6shgiEvTQ4FzcmPI_6_313TfpQUBX5Cz1vUILx_fC_L908dvN1-Ku4fPtzfXd4UvmZmLRvGqlRp447xnWoRKNFBJzxiXxoEyZaWDdNx4xYNQWqrWc--EbAMzodLygrw_eqelGSD4vFhyvZ1SN7h0sNF19t_O2P2w27i3dWlUqessePcoSPHnAjjboUMPfe9GiAtaUdZcGMbVir79D93FJY35vJXKNq2kzNTVkfIpIiZoT8twZtco7Rql_RNlnnjz9w0n_nd2GXh9BHY4x3TqC82MVHUlfwEVW6Wu</recordid><startdate>20211019</startdate><enddate>20211019</enddate><creator>Nouda, Ryotaro</creator><creator>Minami, Shohei</creator><creator>Kanai, Yuta</creator><creator>Kawagishi, Takahiro</creator><creator>Nurdin, Jeffery A.</creator><creator>Yamasaki, Moeko</creator><creator>Kuwata, Ryusei</creator><creator>Shimoda, Hiroshi</creator><creator>Maeda, Ken</creator><creator>Kobayashi, Takeshi</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2160-4458</orcidid><orcidid>https://orcid.org/0000-0002-5102-6951</orcidid></search><sort><creationdate>20211019</creationdate><title>Development of an entirely plasmid-based reverse genetics system for 12-segmented double-stranded RNA viruses</title><author>Nouda, Ryotaro ; Minami, Shohei ; Kanai, Yuta ; Kawagishi, Takahiro ; Nurdin, Jeffery A. ; Yamasaki, Moeko ; Kuwata, Ryusei ; Shimoda, Hiroshi ; Maeda, Ken ; Kobayashi, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-b416f37e1bacc072d62be63c00139ae49567d3a19c41d24734fc1ca23fd09d673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cricetinae</topic><topic>DNA-directed RNA polymerase</topic><topic>Double-stranded RNA</topic><topic>Genetics</topic><topic>Genome, Viral</topic><topic>Genomes</topic><topic>Glycosylation</topic><topic>Mutation</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Reassortant Viruses - genetics</topic><topic>Reoviridae</topic><topic>Reoviridae - genetics</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA viruses</topic><topic>Rotavirus</topic><topic>Segments</topic><topic>Therapeutic applications</topic><topic>Transfection</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nouda, Ryotaro</creatorcontrib><creatorcontrib>Minami, Shohei</creatorcontrib><creatorcontrib>Kanai, Yuta</creatorcontrib><creatorcontrib>Kawagishi, Takahiro</creatorcontrib><creatorcontrib>Nurdin, Jeffery A.</creatorcontrib><creatorcontrib>Yamasaki, Moeko</creatorcontrib><creatorcontrib>Kuwata, Ryusei</creatorcontrib><creatorcontrib>Shimoda, Hiroshi</creatorcontrib><creatorcontrib>Maeda, Ken</creatorcontrib><creatorcontrib>Kobayashi, Takeshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nouda, Ryotaro</au><au>Minami, Shohei</au><au>Kanai, Yuta</au><au>Kawagishi, Takahiro</au><au>Nurdin, Jeffery A.</au><au>Yamasaki, Moeko</au><au>Kuwata, Ryusei</au><au>Shimoda, Hiroshi</au><au>Maeda, Ken</au><au>Kobayashi, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an entirely plasmid-based reverse genetics system for 12-segmented double-stranded RNA viruses</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-10-19</date><risdate>2021</risdate><volume>118</volume><issue>42</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The family Reoviridae is a nonenveloped virus group with a double-stranded (ds) RNA genome comprising 9 to 12 segments. In the family Reoviridae, the genera Cardoreovirus, Phytoreovirus, Seadornavirus, Mycoreovirus, and Coltivirus contain virus species having 12-segmented dsRNA genomes. Reverse genetics systems used to generate recombinant infectious viruses are powerful tools for investigating viral gene function and for developing vaccines and therapeutic interventions. Generally, this methodology has been utilized for Reoviridae viruses such as Orthoreovirus, Orbivirus, Cypovirus, and Rotavirus, which have genomes with 10 or 11 segments, respectively. However, no reverse genetics system has been developed for Reoviridae viruses with a genome harboring 12 segments. Herein, we describe development of an entire plasmid-based reverse genetics system for Tarumizu tick virus (TarTV) (genus Coltivirus, family Reoviridae), which has a genome of 12 segments. Recombinant TarTVs were generated by transfection of 12 cloned complementary DNAs encoding the TarTV genome into baby hamster kidney cells expressing T7 RNA polymerase. Using this technology, we generated VP12 mutant viruses and demonstrated that VP12 is an N-glycosylated protein. We also generated a reporter virus expressing the HiBiT-tagged VP8 protein. This reverse genetics system will increase our understanding of not only the biology of the genus Coltivirus but also the replication machinery of the family Reoviridae.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34635593</pmid><doi>10.1073/pnas.2105334118</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2160-4458</orcidid><orcidid>https://orcid.org/0000-0002-5102-6951</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-10, Vol.118 (42), p.1-8 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8594578 |
source | JSTOR Archival Journals; PubMed Central |
subjects | Animals Biological Sciences Cricetinae DNA-directed RNA polymerase Double-stranded RNA Genetics Genome, Viral Genomes Glycosylation Mutation Plasmids Proteins Reassortant Viruses - genetics Reoviridae Reoviridae - genetics Ribonucleic acid RNA RNA polymerase RNA viruses Rotavirus Segments Therapeutic applications Transfection Viruses |
title | Development of an entirely plasmid-based reverse genetics system for 12-segmented double-stranded RNA viruses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20entirely%20plasmid-based%20reverse%20genetics%20system%20for%2012-segmented%20double-stranded%20RNA%20viruses&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Nouda,%20Ryotaro&rft.date=2021-10-19&rft.volume=118&rft.issue=42&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2105334118&rft_dat=%3Cjstor_pubme%3E27093486%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-b416f37e1bacc072d62be63c00139ae49567d3a19c41d24734fc1ca23fd09d673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2584577433&rft_id=info:pmid/34635593&rft_jstor_id=27093486&rfr_iscdi=true |