Loading…

CBIO-23. ANTIAPOPTOTIC Bcl-xL RESTRICTS APOPTOSIS IN SHH MEDULLOBLASTOMA AND PROMOTES PROGRESSION

Medulloblastomas in most patients are distinctively sensitive to radiation therapy, but the mechanisms that mediate this sensitivity are unclear. Current treatments still fail 20%-60% of patients with SHH medulloblastoma and can leave survivors with long-term neurocognitive and social deficits. Unde...

Full description

Saved in:
Bibliographic Details
Published in:Neuro-oncology (Charlottesville, Va.) Va.), 2021-11, Vol.23 (Supplement_6), p.vi31-vi32
Main Authors: Cleveland, Abigail, Veleta, Katherine, Gershon, Timothy
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Medulloblastomas in most patients are distinctively sensitive to radiation therapy, but the mechanisms that mediate this sensitivity are unclear. Current treatments still fail 20%-60% of patients with SHH medulloblastoma and can leave survivors with long-term neurocognitive and social deficits. Understanding the mechanisms driving the typical radiation-sensitivity may identify less-toxic therapeutic strategies and provide insight into treatment failure. We previously showed that radiation sensitivity depends on the intrinsic apoptotic pathway, mediated by pro-apoptotic BAX. In cerebellar granule neuron progenitors (CGNPs), the cell of origin for SHH medulloblastoma, BAX activity is directly inhibited by anti-apoptotic BCL-xL; Bcl-xL-deleted CGNPs undergo spontaneous apoptosis. To test the therapeutic potential of disrupting BCL-xL in medulloblastoma, we conditionally deleted Bcl-xL in mice genetically engineered to develop SHH medulloblastoma. Here, I show that Bcl-xL deletion slows SHH medulloblastoma growth and prolongs survival of medulloblastoma-bearing mice. Bcl-xL-deleted tumors initially showed increased rates of spontaneous apoptosis, but this effect waned over time, suggesting the emergence of BCL-xL-independent survival mechanisms. We also noted increased microglial infiltration in Bcl-xL-deleted medulloblastomas. We hypothesize that IGF1 produced by microglia in the tumor microenvironment may be contributing to tumor resistance by upregulating translation of MCL-1, an anti-apoptotic BCL-xL homolog. IGF1 is known to upregulate translation through the mTOR pathway, while anti-apoptotic MCL-1 protein abundance is dependent upon translation regulation. Our on-going studies are testing the efficacy of pharmacologically targeting BCL-xL in mice with medulloblastoma, in combination with targeting IGF1 signaling using mTORC1 inhibitors.
ISSN:1522-8517
1523-5866
DOI:10.1093/neuonc/noab196.122