Loading…

Randomly initialized convolutional neural network for the recognition of COVID‐19 using X‐ray images

By the start of 2020, the novel coronavirus (COVID‐19) had been declared a worldwide pandemic, and because of its infectiousness and severity, several strands of research have focused on combatting its ongoing spread. One potential solution to detecting COVID‐19 rapidly and effectively is by analyzi...

Full description

Saved in:
Bibliographic Details
Published in:International Journal of Imaging Systems and Technology 2022-01, Vol.32 (1), p.55-73
Main Authors: Ben Atitallah, Safa, Driss, Maha, Boulila, Wadii, Ben Ghézala, Henda
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:By the start of 2020, the novel coronavirus (COVID‐19) had been declared a worldwide pandemic, and because of its infectiousness and severity, several strands of research have focused on combatting its ongoing spread. One potential solution to detecting COVID‐19 rapidly and effectively is by analyzing chest X‐ray images using Deep Learning (DL) models. Convolutional Neural Networks (CNNs) have been presented as particularly efficient techniques for early diagnosis, but most still include limitations. In this study, we propose a novel randomly initialized CNN (RND‐CNN) architecture for the recognition of COVID‐19. This network consists of a set of differently‐sized hidden layers all created from scratch. The performance of this RND‐CNN is evaluated using two public datasets: the COVIDx and the enhanced COVID‐19 datasets. Each of these datasets consists of medical images (X‐rays) in one of three different classes: chests with COVID‐19, with pneumonia, or in a normal state. The proposed RND‐CNN model yields encouraging results for its accuracy in detecting COVID‐19 results, achieving 94% accuracy for the COVIDx dataset and 99% accuracy on the enhanced COVID‐19 dataset.
ISSN:0899-9457
1098-1098
DOI:10.1002/ima.22654