Loading…
COVIDXception-Net: A Bayesian Optimization-Based Deep Learning Approach to Diagnose COVID-19 from X-Ray Images
COVID-19 is spreading around the world like wildfire. Chest X-rays are used as one of the primary tools for diagnosing COVID-19. However, about two-thirds of the world population do not have access to sufficient radiological services. In this work, we propose a deep learning-driven automated system,...
Saved in:
Published in: | SN computer science 2022, Vol.3 (2), p.115-115, Article 115 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | COVID-19 is spreading around the world like wildfire. Chest X-rays are used as one of the primary tools for diagnosing COVID-19. However, about two-thirds of the world population do not have access to sufficient radiological services. In this work, we propose a deep learning-driven automated system, COVIDXception-Net, for diagnosing COVID-19 from chest X-rays. A primary challenge in any data-driven COVID-19 detection is the scarcity of COVID-19 data, which heavily deteriorates a deep learning model’s performance. To address this issue, we incorporate a weighted-loss function that ensures the COVID-19 cases are given more importance during the training process. We also propose using Bayesian Optimization to find the best architecture for detecting COVID-19. Extensive experimentation on four publicly available COVID-19 datasets shows that our proposed model achieves an accuracy of 0.94, precision 0.95, recall 0.94, specificity 0.997, F1-score 0.94, and Matthews correlation coefficient 0.992 outperforming three widely used architectures—VGG16, MobileNetV2, and InceptionV3. It also surpasses the performance of several state-of-the-art COVID-19 detection methods. We also performed two ablation studies that show our model’s accuracy degrades from 0.994 to 0.950 when a random search is used and to 0.983 when a regular loss function is employed instead of the Bayesian and weighted loss, respectively. |
---|---|
ISSN: | 2662-995X 2661-8907 |
DOI: | 10.1007/s42979-021-00980-3 |