Loading…
Robustness of Latent Profile Analysis to Measurement Noninvariance Between Profiles
Latent profile analysis (LPA) identifies heterogeneous subgroups based on continuous indicators that represent different dimensions. It is a common practice to measure each dimension using items, create composite or factor scores for each dimension, and use these scores as indicators of profiles in...
Saved in:
Published in: | Educational and psychological measurement 2022-02, Vol.82 (1), p.5-28 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Latent profile analysis (LPA) identifies heterogeneous subgroups based on continuous indicators that represent different dimensions. It is a common practice to measure each dimension using items, create composite or factor scores for each dimension, and use these scores as indicators of profiles in LPA. In this case, measurement models for dimensions are not included and potential noninvariance across latent profiles is not modeled in LPA. This simulation study examined the robustness of LPA in terms of class enumeration and parameter recovery when the noninvariance was unmodeled by using composite or factor scores as profile indicators. Results showed that correct class enumeration rates of LPA were relatively high with small degree of noninvariance, large class separation, large sample size, and equal proportions. Severe bias in profile indicator mean difference was observed with intercept and loading noninvariance, respectively. Implications for applied researchers are discussed. |
---|---|
ISSN: | 0013-1644 1552-3888 |
DOI: | 10.1177/0013164421997896 |