Loading…

Deep-Learning-Based Cancer Profiles Classification Using Gene Expression Data Profile

The quantity of data required to give a valid analysis grows exponentially as machine learning dimensionality increases. In a single experiment, microarrays or gene expression profiling assesses and determines gene expression levels and patterns in various cell types or tissues. The advent of DNA mi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of healthcare engineering 2022-01, Vol.2022, p.4715998-13
Main Author: Almarzouki, Hatim Z
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The quantity of data required to give a valid analysis grows exponentially as machine learning dimensionality increases. In a single experiment, microarrays or gene expression profiling assesses and determines gene expression levels and patterns in various cell types or tissues. The advent of DNA microarray technology has enabled simultaneous intensive care of hundreds of gene expressions on a single chip, advancing cancer categorization. The most challenging aspect of categorization is working out many information points from many sources. The proposed approach uses microarray data to train deep learning algorithms on extracted features and then uses the Latent Feature Selection Technique to reduce classification time and increase accuracy. The feature-selection-based techniques will pick the important genes before classifying microarray data for cancer prediction and diagnosis. These methods improve classification accuracy by removing duplicate and superfluous information. The Artificial Bee Colony (ABC) technique of feature selection was proposed in this research using bone marrow PC gene expression data. The ABC algorithm, based on swarm intelligence, has been proposed for gene identification. The ABC has been used here for feature selection that generates a subset of features and every feature produced by the spectators, making this a wrapper-based feature selection system. This method’s main goal is to choose the fewest genes that are critical to PC performance while also increasing prediction accuracy. Convolutional Neural Networks were used to classify tumors without labelling them. Lung, kidney, and brain cancer datasets were used in the procedure’s training and testing stages. Using the cross-validation technique of k-fold methodology, the Convolutional Neural Network has an accuracy rate of 96.43%. The suggested research includes techniques for preprocessing and modifying gene expression data to enhance future cancer detection accuracy.
ISSN:2040-2295
2040-2309
DOI:10.1155/2022/4715998