Loading…

Engineering tetravalent IgGs with enhanced agglutination potencies for trapping vigorously motile sperm in mucin matrix

Multivalent antibodies such as sIgA can crosslink motile entities such as sperm and bacteria, creating agglomerates that are too large to permeate the dense mucin matrix in mucus, a process commonly referred to as immune exclusion. Unfortunately, sIgA remains challenging to produce in large quantiti...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia 2020-11, Vol.117, p.226-234
Main Authors: Shrestha, Bhawana, Schaefer, Alison, Chavez, Elizabeth C., Kopp, Alexander J., Jacobs, Timothy M., Moench, Thomas R., Lai, Samuel K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multivalent antibodies such as sIgA can crosslink motile entities such as sperm and bacteria, creating agglomerates that are too large to permeate the dense mucin matrix in mucus, a process commonly referred to as immune exclusion. Unfortunately, sIgA remains challenging to produce in large quantities, and easily aggregates, which prevented their use in clinical applications. To develop sIgA-like tetravalent antibodies that are stable and can be easily produced in large quantities, we designed two IgGs possessing 4 identical Fab domains, with the Fabs arranged either in serial or in the diametrically opposite orientation. As a proof-of-concept, we engineered these tetravalent IgG constructs to bind a ubiquitous sperm antigen using a Fab previously isolated from an immune infertile woman. Both constructs possess at least 4-fold greater agglutination potency and induced much more rapid sperm agglutination than the parent IgG, while exhibiting comparable production yields and identical thermostability as the parent IgG. These tetravalent IgGs offer promise for non-hormonal contraception and underscores the multimerization of IgG as a promising strategy to enhance antibody effector functions based on immune exclusion. [Display omitted]
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2020.09.020