Loading…

Genome size evolution in the diverse insect order Trichoptera

Abstract Background Genome size is implicated in the form, function, and ecological success of a species. Two principally different mechanisms are proposed as major drivers of eukaryotic genome evolution and diversity: polyploidy (i.e., whole-genome duplication) or smaller duplication events and bur...

Full description

Saved in:
Bibliographic Details
Published in:Gigascience 2022-02, Vol.11
Main Authors: Heckenhauer, Jacqueline, Frandsen, Paul B, Sproul, John S, Li, Zheng, Paule, Juraj, Larracuente, Amanda M, Maughan, Peter J, Barker, Michael S, Schneider, Julio V, Stewart, Russell J, Pauls, Steffen U
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Genome size is implicated in the form, function, and ecological success of a species. Two principally different mechanisms are proposed as major drivers of eukaryotic genome evolution and diversity: polyploidy (i.e., whole-genome duplication) or smaller duplication events and bursts in the activity of repetitive elements. Here, we generated de novo genome assemblies of 17 caddisflies covering all major lineages of Trichoptera. Using these and previously sequenced genomes, we use caddisflies as a model for understanding genome size evolution in diverse insect lineages. Results We detect a ∼14-fold variation in genome size across the order Trichoptera. We find strong evidence that repetitive element expansions, particularly those of transposable elements (TEs), are important drivers of large caddisfly genome sizes. Using an innovative method to examine TEs associated with universal single-copy orthologs (i.e., BUSCO genes), we find that TE expansions have a major impact on protein-coding gene regions, with TE-gene associations showing a linear relationship with increasing genome size. Intriguingly, we find that expanded genomes preferentially evolved in caddisfly clades with a higher ecological diversity (i.e., various feeding modes, diversification in variable, less stable environments). Conclusion Our findings provide a platform to test hypotheses about the potential evolutionary roles of TE activity and TE-gene associations, particularly in groups with high species, ecological, and functional diversities.
ISSN:2047-217X
2047-217X
DOI:10.1093/gigascience/giac011