Loading…
High-calorie diet results in reversible obesity-related glomerulopathy in adult zebrafish regardless of dietary fat
Obesity is a risk factor for the development of kidney disease. The role of diet in this association remains undetermined, in part due to practical limitations in studying nutrition in humans. In particular, the relative importance of calorie excess versus dietary macronutrient content is poorly und...
Saved in:
Published in: | American journal of physiology. Renal physiology 2022-05, Vol.322 (5), p.F527-F539 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Obesity is a risk factor for the development of kidney disease. The role of diet in this association remains undetermined, in part due to practical limitations in studying nutrition in humans. In particular, the relative importance of calorie excess versus dietary macronutrient content is poorly understood. For example, it is unknown if calorie restriction modulates obesity-related kidney pathology. To study the effects of diet-induced obesity in a novel animal model, we treated zebrafish for 8 wk with diets varied in both calorie and fat content. Kidneys were evaluated by light and electron microscopy. We evaluated glomerular filtration barrier function using a dextran permeability assay. We assessed the effect of diet on podocyte sensitivity to injury using an inducible podocyte injury model. We then tested the effect of calorie restriction on the defects caused by diet-induced obesity. Fish fed a high-calorie diet developed glomerulomegaly (mean: 1,211 vs. 1,010 µm
in controls,
= 0.007), lower podocyte density, foot process effacement, glomerular basement membrane thickening, tubular enlargement (mean: 1,038 vs. 717 µm
in controls,
< 0.0001), and ectopic lipid deposition. Glomerular filtration barrier dysfunction and increased susceptibility to podocyte injury were observed with high-calorie feeding regardless of dietary fat content. These pathological changes resolved with 4 wk of calorie restriction. Our findings suggest that calorie excess rather than dietary fat drives obesity-related kidney dysfunction and that inadequate podocyte proliferation in response to glomerular enlargement may cause podocyte dysfunction. We also demonstrate the value of zebrafish as a novel model for studying diet in obesity-related kidney disease.
Obesity is a risk factor for kidney disease. The role of diet in this association is difficult to study in humans. In this study, zebrafish fed a high-calorie diet, regardless of fat macronutrient composition, developed glomerulomegaly, foot process effacement, and filtration barrier dysfunction, recapitulating the changes seen in humans with obesity. Calorie restriction reversed the changes. This work suggests that macronutrient composition may be less important than total calories in the development of obesity-related kidney disease. |
---|---|
ISSN: | 1931-857X 1522-1466 |
DOI: | 10.1152/ajprenal.00018.2022 |