Loading…
KMT2D loss drives aggressive tumor phenotypes in cutaneous squamous cell carcinoma
Cutaneous squamous cell carcinoma (cSCC) is the second most lethal skin cancer. Due to ultraviolet light-induced damage, cSCCs have a high mutation rate, but some genes are more frequently mutated in aggressive cSCCs. Lysine-specific histone methyltransferase 2D ( ) has a two-fold higher mutation fr...
Saved in:
Published in: | American journal of cancer research 2022-01, Vol.12 (3), p.1309-1322 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cutaneous squamous cell carcinoma (cSCC) is the second most lethal skin cancer. Due to ultraviolet light-induced damage, cSCCs have a high mutation rate, but some genes are more frequently mutated in aggressive cSCCs. Lysine-specific histone methyltransferase 2D (
) has a two-fold higher mutation frequency in metastatic cSCCs relative to primary non-metastatic associated cSCCs. The role of KMT2D in more aggressive phenotypes in cSCC is uncharacterized. Studies of other tumor types suggest that KMT2D acts to suppress tumor development. To determine whether KMT2D loss has an impact on tumor characteristics, we disrupted
in a cSCC cell line using CRISPR-cas9 and performed phenotypic analyses. KMT2D loss modestly increased cell proliferation and colony formation (1.4- and 1.6-fold respectively). Cells lacking KMT2D showed increased rates of migration and faster cell cycle progression. In xenograft models, tumors with KMT2D loss showed slight increases in mitotic indices. Collectively, these findings suggest that
loss-of-function mutations may promote more aggressive and invasive behaviors in cSCC, suggesting that KMT2D-related pathways could be targets for cancer therapies. Future studies to determine the downstream genes and mechanism of phenotypic effect are needed. |
---|---|
ISSN: | 2156-6976 2156-6976 |