Loading…

Biodegradable MoOx@MB incorporated hydrogel as light-activated dressing for rapid and safe bacteria eradication and wound healing

Wounds infected with drug-resistant bacteria are hard to treat, which remains a serious problem in clinical practice. An innovative strategy for treating wound infections is thus imperative. Herein, we describe the construction of a nanocomposite from biocompatible poly(vinyl alcohol) (PVA)/polyethy...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2022-03, Vol.12 (15), p.8862-8877
Main Authors: Wang, Yifan, Yao, Huiqin, Zu, Yan, Yin, Wenyan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wounds infected with drug-resistant bacteria are hard to treat, which remains a serious problem in clinical practice. An innovative strategy for treating wound infections is thus imperative. Herein, we describe the construction of a nanocomposite from biocompatible poly(vinyl alcohol) (PVA)/polyethylene glycol (PEG) hydrogel loaded biodegradable MoOx nanoparticles (NPs) and photosensitizer methylene blue (MB), denoted as MoOx@MB-hy. By incorporating MoOx@MB NPs, the nanocomposite hydrogel can act as a photoactivated wound dressing for near-infrared-II 1064 nm and 660 nm laser synergetic photothermal–photodynamic therapy (PTT–PDT). The key to PTT-induced heat becomes the most controllable release of MB from MoOx@MB-hy to produce more 1O2 under 660 nm irradiation. Importantly, MoOx@MB-hy can consume glutathione (GSH) and trap bacteria nearer to the distance limit of ROS damage to achieve a self-migration-enhanced accumulation of reactive oxygen species (ROS), thereby conquering the intrinsic shortcomings of short diffusion distance and lifetime of ROS. Consequently, MoOx@MB-hy has high antibacterial efficiencies of 99.28% and 99.16% against AmprE. coli and B. subtilis within 15 min. Moreover, the light-activated strategy can rapidly promote healing in wounds infected by drug-resistant bacteria. This work paves a way to design a novel nanocomposite hydrogel dressing for safe and highly-efficient antibacterial therapy.
ISSN:2046-2069
DOI:10.1039/d2ra00963c